
Shri Vile Parle Kelavani Mandal’s

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai)

Digital identity system using
post-quantum cryptographic

paradigms

Submitted in partial fulfillment of the requirement

of the degree of

Bachelor of Technology in

Computer Science and Engineering
(IoT and Cyber Security with Block Chain

Technology)

By

Ansh Shah 60019210018

Aditya Repe 60019210043

Manas Patil 60019210046

Soham Rane 60019210062

Under the guidance of

Dr. Narendra Shekokar and Mrs. Dipali Bhole

University of Mumbai
A.Y. 2024 – 2025

DECLARATION

We declare that this written submission represents our ideas in our own words and

where others’ ideas or words have been included, we have adequately cited and referenced

the original sources. We also declare that we have adhered to all the principles of aca-

demic honesty and integrity and have not misrepresented or fabricated or falsified any

idea/data/fact/source in our submission. We understand that any violation of the above

will be a cause for disciplinary action by the Institute and can also evoke penal action from

the sources, which have thus not been properly cited or from whom proper permission has

not been taken, when needed.

Ansh Shah (60019210018)

Aditya Repe (60019210043)

Manas Patil (60019210046)

Soham Rane (60019210062)

Place: DJSCE

Date:

SVKM’s Dwarkadas J. Sanghvi College of Engineering

Department of Computer Science and Engineering

(IoT and Cyber Security with Block Chain Technology)

Certificate

This is to certify that the project entitled “Digital identity system using post-quantum

cryptographic paradigms” is a genuine work of “Ansh Shah” (60019210018), “Aditya

Repe” (60019210043), “Manas Patil” (60019210046) and “Soham Rane” (60019210062)

submitted in the partial fulfillment of the requirement for the award of the Bachelor of

Technology in Computer Science and Engineering (IoT and Cyber Security with Block

Chain Technology).

Dr. Narendra Shekokar

Project Guide

Mrs. Dipali Bhole

Project Guide

Dr. Narendra Shekokar

Vice Principal

and Head of the Department

Dr. Hari Vasudevan

Principal

Place: DJSCE

Date :

APPROVAL SHEET

Project entitled, “Digital identity system using post-quantum cryptographic

paradigms”, submitted by “Ansh Shah” (60019210018), “Aditya Repe”

(60019210043), “Manas Patil” (60019210046) and “Soham Rane”

(60019210062) is approved for the award of the Bachelor of Technology in Computer

Science and Engineering (Internet of Things and Cyber Security with Blockchain

Technology).

Internal Examiner

Name and Signature

External Examiner

Name and Signature

Dr. Narendra Shekokar

Project Guide

Dr. Narendra Shekokar

Head of the Department

Dr. Hari Vasudevan

Principal

Place: DJSCE

Date:

Acknowledgement

We take this opportunity to express our deep sense of gratitude to our project guides,

Dr. Narendra Shekokar and Mrs. Dipali Bhole, for their continuous guidance and encour-

agement throughout the duration of our project work. It is because of their experience

and knowledge that we were able to fulfill the requirement for the completion of this

project within the stipulated time. We would also like to thank Dr. Narendra Shekokar,

Vice Principal and Head of the Department, Computer Science and Engineering (IoT

and Cyber Security with Block Chain Technology) for his encouragement, whole-hearted

cooperation and support.

We would also like to thank our Principal, Dr. Hari Vasudevan and the management of

D.J. Sanghvi College of Engineering, Vile Parle (W), Mumbai for providing us with all the

facilities and a work-friendly environment. We acknowledge with thanks, the assistance

provided by departmental staff, library, lab assistant lab attendants.

Ansh Shah (60019210018)

Aditya Repe (60019210043)

Manas Patil (60019210046)

Soham Rane (60019210062)

Abstract

In context of a rapidly developing digital landscape, it has become imperative that users

secure their digital interactions. The advent of quantum computing presses this need

further. This research presents a comprehensive framework for a digital identity system

using post-quantum cryptographic paradigms to ensure long-term security and privacy. By

integrating quantum-resistant algorithms for primitives such as key encapsulation mecha-

nisms, digital signatures, and advanced hashing techniques, the proposed system delivers

secure identity management. The framework is designed to withstand potential threats

posed by quantum computers while maintaining compatibility with existing infrastruc-

ture. We evaluate the system’s performance through a rigorous security analysis of the

proposed algorithm by time leakage vectors and statistical analysis thereof, concluding

that there are no implementation attack vectors independent to the proposed algorithm

and that it’s security is reliant on its components only.

Keywords: post-quantum cryptography, digital identity, security

iii

List of Tables

7.1 Comparison of Identity System Features 42

9.1 Welch’s t-test and Cohen’s d Summary . 56

v

List of Figures

6.1 Software Architecture of the Digital Identity System 23

9.1 Boxplot of Operation Timing Distributions 50

9.2 Correlation Heatmap among Operation Timings 51

9.3 Anomalies in Kyber Timing . 52

9.4 Deviation from Mean Total Timing . 52

9.5 PCA Projection of Timing Features . 53

9.6 PCA Loadings for Feature Contribution 54

9.7 Mahalanobis Distance for Multivariate Outliers 55

vii

List of Notations and Operations

Symbol Meaning / Description

µ Mean vector of a class (e.g., valid vs invalid ciphertexts)

Σ Covariance matrix of a multivariate distribution

σ2 Variance of a random variable

E[X] Expected value (mean) of a random variable X

H(X) Shannon entropy of a distribution X

DM(x) Mahalanobis distance of x from the class mean

ct Ciphertext

Dec(sk, ct) Key decapsulation function

Enc(pk, ss) Key encapsulation function

pk, sk Public key and secret key respectively

R Residue class ring Zq[X]/(Xn + 1) used in Kyber

Sig(sk,m) Digital signature of message m using secret key

ss Shared secret (output of KEM)

T Total execution time of a function call

ti Timing measurement of the i-th invocation

V er(pk,m, σ) Signature verification function

∥ Concatenation operator (e.g., for message encoding)

||x|| Norm of vector x, often used in noise estimation

⊕ Bitwise XOR operation

x Observation or feature vector (e.g., timing, power usage, branch

counts)

ix

List of Symbols

x

Abbreviations

Abbreviation Full Form

API Application Programming Interface

EUF-CMA Existential Unforgeability under Adaptive Chosen Message

Attack

FFI Foreign Function Interface

FIPS Federal Information Processing Standards

IND-CCA3 Indistinguishability under Adaptive Chosen Ciphertext At-

tack, 3rd level

IND-CPA Indistinguishability under Chosen Plaintext Attack

KEM Key Encapsulation Mechanism

LWE Learning With Errors

MLWE Module Learning With Errors

MSIS Module Short Integer Solution

NIST National Institute of Standards and Technology

PRF Pseudo Random Function

RAM Random Access Memory

SCA Side-Channel Attack

XOF eXtendable Output Function

ZKP Zero-Knowledge Proofs

zk-SNARK Zero-Knowledge Succinct Non-Interactive Arguments of

Knowledge

xi

List of Abbreviations

xii

Contents

Declaration ii

Certificate iii

Approval Sheet i

Acknowledgement ii

Abstract ii

List of Tables iv

List of Figures vii

List of Symbols viii

List of Abbreviations xi

1 Introduction 1

1.1 Motivation . 2

1.2 Background . 2

1.3 Project Scope and Contributions . 3

2 Literature Survey 5

2.1 History of Post-Quantum Cryptography 6

2.2 NIST PQC Standardization Process . 6

2.3 Transition towards Post-Quantum Cryptography 7

xiii

CONTENTS

2.4 Digital Identity Systems . 7

2.5 Research Gaps . 8

3 Proposed Model 11

3.1 Cryptographic Kernel . 12

3.2 State Module . 13

3.3 Other Modules Considering Application . 13

4 Methodology 15

4.1 Approach . 16

4.2 Design Considerations . 16

4.3 Cryptographic Considerations . 17

4.3.1 Timing Attack Evaluation . 17

4.3.2 Statistical Space Evaluation using Mahalanobis Distance 18

5 Requirements 19

5.1 Software Requirements . 20

5.2 Hardware Requirements . 20

6 Architecture 21

6.1 Cryptographic Kernel . 23

6.2 Cryptosystems employed . 24

6.2.1 CRYSTALS-Kyber . 24

6.2.2 CRYSTALS-Dilithium . 26

6.3 Mathematical Basis for CRYSTALS Algorithms 27

6.3.1 Module Learning With Errors (MLWE) Problem 27

6.3.2 Module Short Integer Solution (MSIS) Problem 28

6.4 State Module . 29

6.5 User Interface Components . 29

6.5.1 Web Client . 29

6.5.2 Web Extension . 31

6.6 Zero-Knowledge Proof Module . 32

xiv

CONTENTS

6.6.1 Theoretical Foundations . 32

6.6.2 Security Considerations . 33

7 Implementation 35

7.1 CRYSTALS-Kyber . 36

7.1.1 Overview . 36

7.1.2 Mathematical Foundations . 36

7.1.3 Reference Implementation Details 37

7.1.4 Strengths . 37

7.1.5 Code Example . 37

7.2 CRYSTALS-Dilithium . 38

7.2.1 Overview . 38

7.2.2 Mathematical Foundations . 38

7.2.3 Reference Implementation Details 38

7.2.4 Strengths . 39

7.2.5 Code Example . 39

7.3 Identity Generation Algorithm . 39

7.3.1 Description . 39

7.3.2 Algorithm . 40

7.3.3 Mathematical Basis . 40

7.3.4 Error Handling . 41

7.4 Key Derivation Function . 42

7.4.1 Description . 42

7.4.2 Mathematical Basis . 42

7.4.3 Algorithm . 43

7.5 Zero-Knowledge Proofs . 43

7.5.1 Overview . 43

7.5.2 Circuit . 44

7.5.3 Security Features in Implementation 44

xv

CONTENTS

8 Experimentation 45

8.1 Approaches . 46

8.2 Data Collection Methodology . 46

8.3 Timing Attack Experiment . 47

9 Results 49

9.1 Preliminary Analysis . 50

9.2 Outlier and Anomaly Detection . 52

9.3 Principal Component Analysis . 53

9.4 Mahalanobis Distance and Multivariate Anomaly Detection 55

9.5 Statistical Testing of Anomalies . 55

10 Analysis 57

10.1 Interpretation of Timing Attack Experiment 58

10.2 Quantum Random Oracle Model Analysis 58

10.3 Threat Models . 59

10.3.1 Adversarial capabilities . 59

10.3.2 Web-Specific Scenarios . 59

10.4 Formal Verification Effort . 60

10.4.1 Verification Objectives . 60

10.4.2 Tooling and Methodology . 60

10.4.3 Abstraction and Idealization Attempts 61

10.4.4 Security Game Definitions . 61

10.5 Game-Based Security Definitions . 62

10.5.1 Unforgeability (EUF-CMA-style) 62

10.5.2 Indistinguishability/Anonymity of Keys 62

10.5.3 KEM CCA security: . 63

10.5.4 SHAKE256 as Key Compression and PRF 63

10.5.5 Composition of Kyber and Dilithium 64

10.5.6 Security guarantees: . 64

10.5.7 Potential pitfalls . 65

xvi

CONTENTS

10.5.8 Non-re-signability and key binding 65

10.5.9 Performance and standards . 65

10.5.10 Known guidance . 66

10.5.11 Compliance with Post-Quantum Standards 66

10.6 Potential Vulnerabilities and Recommendations 67

10.6.1 Collision and Key-Binding Risks . 67

10.6.2 Subtle Interactions . 67

10.6.3 Rollback and Re-signing . 67

10.6.4 Side-Channel and Implementation 68

10.6.5 Future-Proofing . 68

11 Conclusion and Future Scope 69

11.1 Conclusion . 70

11.2 Future Scope . 71

A Appendix A - Code for analysis 73

A.1 Code for analysis . 74

A.1.1 Circuit for Zero-Knowledge Proof 74

A.1.2 Proof Generation . 74

A.1.3 Proof Verification . 75

A.1.4 Setup Process . 76

B Appendix B - Errors described 77

B.1 System Errors . 78

B.2 Web Extension Errors . 78

B.3 VM Errors . 79

B.4 C Errors . 79

References 81

List of Publications 85

xvii

C H A P T E R 1

Introduction

⃝

This chapter lays the foundation for understanding the transformative impact of quantum

computing on digital security. It introduces the existential threat quantum algorithms

pose to classical cryptographic techniques and highlights the urgent global response in

the form of post-quantum cryptography (PQC). With the U.S. National Institute of

Standards and Technology (NIST) spearheading standardization efforts, this section

contextualizes the shift from traditional algorithms to quantum-resistant counterparts

like CRYSTALS-Kyber and Dilithium. It sets the stage for exploring how this quantum

shift could fundamentally reshape secure digital identity systems and data protection in

the years ahead.

⃝

1

Introduction

1.1 Motivation

As quantum computing technologies progress steadily toward practical implementation,

conventional public key cryptographic systems such as RSA and ECC face an existential

threat due to the efficiency of quantum algorithms such as Shor and Grover. These devel-

opments have prompted the cryptographic community to prioritize the development and

standardization of post-quantum cryptographic (PQC) algorithms that are secure against

quantum adversaries. One domain that will be critically affected is identity management,

an area fundamental to authentication, authorization, and secure communication between

digital systems.

Digital identity systems underpin services ranging from financial transactions to e-

Governance. However, the security guarantees of many such systems are predicated on

assumptions that fail in the presence of large-scale quantum computation. This thesis is

motivated by the need to design identity frameworks that are robust in the post-quantum

era, leveraging lattice-based primitives that offer strong security under well-studied hard-

ness assumptions such as Module-LWE and Module-SIS.

1.2 Background

The National Institute of Standards and Technology (NIST) has recently concluded the

third round of its Post-Quantum Cryptography Standardization process, recommend-

ing algorithms like CRYSTALS-Kyber for Key Encapsulation Mechanisms (KEM) and

CRYSTALS-Dilithium for Digital Signatures [1]. These algorithms are founded on struc-

tured lattice problems and offer a compelling balance between performance and security.

Given their prospective adoption in industry and government applications, these primi-

tives form the cryptographic basis of our identity system.

CRYSTALS-Kyber is a module lattice-based KEM that achieves IND-CCA2 security

using techniques like Fujisaki-Okamoto transformations and structured error sampling

[2]. CRYSTALS-Dilithium, similarly, is a digital signature scheme based on the Fiat-

Shamir with Aborts paradigm, exhibiting strong security in the Quantum Random Oracle

Model (QROM) [3]. Together, these enable the construction of identity systems with

confidentiality, authenticity, and post-quantum resilience.

2

1.3 Project Scope and Contributions

1.3 Project Scope and Contributions

This thesis presents the design, implementation, and evaluation of a secure digital iden-

tity system rooted in post-quantum cryptographic foundations. The system architecture

revolves around a novel, functional identity generation algorithm implemented in the C

programming language. This implementation is augmented with a lightweight and secure

interface, enabling usage in modern web environments via Foreign Function Interfaces

(FFI) and JavaScript-based tooling.

Key contributions of this thesis include:

• Design and Construction: A post-quantum digital identity generation protocol

based on Kyber768 and Dilithium2, implemented in C with cross-platform support.

• Interface and Deployment: A functional interface facilitating use in web ecosys-

tems through Node.js and FFI bridges.

• Threat Modeling: Systematic threat modeling across classical and quantum threat

vectors, including MITM, impersonation, and hash-forgery attacks.

• Formal Security Analysis: We perform a QROM security analysis of the key

components, drawing from recent work on the tight security reductions of lattice-

based primitives.

• Timing and Statistical Analysis: We empirically analyze the system for po-

tential side-channel vulnerabilities, including timing variations and memory-access

patterns. All critical functions are benchmarked and profiled for leakage resilience.

• Safety and Performance Evaluation: Our results affirm the system’s safety un-

der adversarial models and demonstrate competitive performance metrics consistent

with reference implementations.

This thesis thus aims to offer a practical and secure foundation for post-quantum

digital identities, contributing to the growing body of work on PQC deployment and

secure identity design.

3

C H A P T E R 2

Literature Survey

⃝

This chapter explores the evolving landscape of post-quantum cryptography (PQC) and

its integration into digital identity systems. As traditional cryptographic methods such

as RSA and ECC become vulnerable to quantum attacks, researchers have proposed

quantum-resistant algorithms like CRYSTALS-Dilithium and novel schemes based on

non-commutative algebra, aiming to balance security with efficiency. In parallel, advances

in digital identity systems, such as those in decentralized and user-controlled models,

are gaining traction. These systems, when combined with zero-knowledge proofs and

post-quantum certificates, offer a promising path towards secure, privacy-preserving

identity verification in a quantum era. Finally, recent bibliometric studies outline

ongoing research trends, such as cryptographic performance optimization, while also

highlighting critical gaps in practical deployment, especially within real-world digital

identity infrastructures. These insights collectively underscore the need to adapt identity

systems for countering future quantum threats.

⃝

5

Literature Survey

2.1 History of Post-Quantum Cryptography

Post-quantum cryptography (PQC) describes cryptographic protocols that would be se-

cure in case the adversary owns a quantum computer. RSA and ECC are standard public-

key cryptosystems that are known to be vulnerable to quantum attacks, most importantly

Shor’s algorithm which can quickly compute integer factorization and discrete logarithms

[4]. Researchers, therefore, have tested various quantum-resistant techniques.

Lattice-based cryptography has emerged as a promising contender due to its secure

foundation and efficiency of operation. The Learning with Errors (LWE) problem, origi-

nally suggested by Regev [5], and its structured forms, Ring-LWE and Module-LWE, are

the basis of most lattice-based schemes. CRYSTALS-Dilithium, a lattice-based digital

signature scheme, is an example of a scheme and has been selected by NIST for stan-

dardization [6]. Some of the prominent post-quantum cryptography (PQC) schemes are

hash-based signatures like SPHINCS+ [7], code-based constructs such as Classic McEliece

[8], multivariate polynomial signatures such as Rainbow [9], and isogeny-based schemes

represented by SIKE [10].

2.2 NIST PQC Standardization Process

Sensing the imminent danger of quantum computing, the National Institute of Standards

and Technology (NIST) began a multi-round standardization of PQC in 2016 [11]. Fol-

lowing rigorous assessment, NIST shortlisted four algorithms to be standardized in July

2022: CRYSTALS-Kyber for key encapsulation mechanisms (KEMs), and CRYSTALS-

Dilithium, FALCON, and SPHINCS+ for digital signatures [6]. These were chosen on the

basis of security strength, performance, and implementation considerations.

The standardization continues, with the fourth round at NIST taking into account

more signature schemes and specific applications. Of particular interest, HQC, a code-

based KEM, was chosen in this round, demonstrating the diversity of techniques under

investigation [12].

6

2.3 Transition towards Post-Quantum Cryptography

2.3 Transition towards Post-Quantum Cryptography

It is difficult to migrate legacy systems to PQC in a number of areas. One of them is

the incorporation of new cryptographic primitives within the established protocols, e.g.,

TLS, X.509 certificates, and secure message systems. Post-quantum algorithms generally

imply larger key sizes and signature sizes, which are a burden in resource-constrained

environments such as IoT devices [13].

For a seamless migration, ”cryptographic agility” has been put forth as a concept that

allows systems to change between cryptographic algorithms without major overhauls [14].

Hybrid cryptographic schemes that incorporate classical and post-quantum algorithms

have been suggested to offer interoperability during the transition period [15]. Google

and Cloudflare have tested hybrid deployments to defend against pre-emptive quantum

attacks while offering compatibility [16, 17].

Standards organizations such as ETSI and IETF are actively making changes to the

cryptographic standards and protocols to facilitate PQC, with a global coordinated effort

on this transition [18].

2.4 Digital Identity Systems

Digital identity systems are defined largely for authentication and access control purposes

in a wide range of applications, and centralized models will most likely be based on

centralized authorities. These centralized models face privacy issues as well as being

single points of failure [19]. In response, decentralized and user-centric models, such

as Self-Sovereign Identity (SSI), have gained traction. SSI empowers users with greater

control over their identity attributes and verifiable credentials [20].

Blockchain platforms like Sovrin and Hyperledger Indy have explored SSI infrastruc-

tures, leveraging distributed ledgers to anchor decentralized identifiers (DIDs) and support

zero-knowledge proof (ZKP) based verifications [21]. However, integrating PQC into these

systems is imperative to withstand future quantum threats. Projects like PQID and efforts

from European eIDAS frameworks illustrate early adoption of post-quantum primitives in

digital identity stacks [22].

7

Literature Survey

2.5 Research Gaps

Despite advancements in PQC and digital identity systems, several research gaps per-

sist. Many proposed PQC schemes lack extensive testing in real-world identity systems,

particularly in mobile and resource-limited settings [23]. While hybrid protocols exist,

rigorous security models for their composition are underdeveloped [24]. Mechanisms for

efficient revocation, attribute-based access control, and long-term storage security under

PQC remain areas requiring further research [25].

Usability and privacy concerns also arise with post-quantum digital identity systems.

While ZKPs offer privacy-preserving proofs, their post-quantum counterparts often in-

troduce significant computational overhead, limiting scalability [26]. Furthermore, bib-

liometric analyses indicate a concentration of research on lattice-based systems, with an

under-representation of alternative paradigms such as isogenies and multivariate cryptog-

raphy [27].

The research gap can be encapsulated as:

1. Lack of practical implementations: Most PQC algorithms have only recently been

implemented in a practical way and deployed in production according to the NIST

standards. Many proposed algorithms are resource-intensive and have not yet been

optimized for large-scale deployment in real-world systems. In particular, digital

identity frameworks such as Self-Sovereign Identity (SSI) struggle to incorporate

PQC due to issues surrounding efficiency and integration with existing infrastruc-

tures [28], [29]. This is because most current research focuses on improving these

cryptographic primitives and lacks robust testing in diverse environments.

2. Scalability issues: Any identity system conceived with post-quantum paradigms in

mind has to consider the amount and efficiency of computational resources it will

consume at scale. The PQC algorithms’ relatively larger key sizes and signature

lengths hinder performance when deployed in cloud-based or decentralized identity

systems, which must handle millions of transactions per second [29].

3. Transition frameworks: Effective frameworks that can facilitate the seamless tran-

sition of endpoint security from classical algorithms to post-quantum algorithms

are scarce and in early stages of development. Any such system must be able to

8

2.5 Research Gaps

dynamically switch between algorithms depending on threats or hardware [28].

4. Usability: A significant gap also lies in the user experience and usability of PQC-

based digital identity systems. Complex cryptographic mechanisms may make these

systems less intuitive for end-users, especially in self-managed identity models like

SSI. Post-quantum digital identity systems must be user-friendly while maintaining

security. This remains a key challenge that has not been sufficiently addressed [29].

A concrete conclusion of the above literature survey can be that,

“A practical post-quantum digital identity solution with robust testing and security anal-

ysis does not reasonably exist, or is not performant, efficient, or usable enough to be

deployed on a user endpoint.”

This thesis aims to address these gaps by evaluating the feasibility of integrating

CRYSTALS-Dilithium into SSI frameworks and proposing a modular architecture that

supports hybrid and quantum-safe identity verification workflows.

9

C H A P T E R 3

Proposed Model

⃝

This chapter proposes a modular and security-focused model for a post-quantum

cryptography-enabled digital identity system. The design distinctly separates the

application logic from cryptographic operations, ensuring flexibility, maintainability, and

rigorous security assurance. At its core, the model introduces a dedicated cryptographic

kernel, implemented in C for performance and type safety. This kernel encapsulates

key cryptographic primitives, such as hashing, digital signatures, and key encapsulation

mechanisms, into a standalone, testable module compliant with modern security stan-

dards. To securely and efficiently manage application data, a state module is proposed. It

acts as an intermediary between the application and the cryptographic core. In addition,

the network and integration modules expand the capabilities of the system. These include

secure communication layers, SSO interfaces, credential recovery mechanisms, and even

multimedia signature support.

⃝

11

Proposed Model

We propose a holistic design for the solution as concerned. The components of the

solution separate the concerns of an end-user application not only from the user’s point

of view but the authors too.

3.1 Cryptographic Kernel

A system focused on the security of end users must separate the concerns of data across

modules effectively. We intend to implement a pure cryptographic kernel containing all

requisite functions in one place, importing only the essential libraries and exporting static

data to act as state in further modules. The intended testing against performance bench-

marks, IND-CCA 3 standard, and other standards will be performed on this kernel.

Reason

An integrated application module implementing all necessary cryptographic functions

would be well-suited from the point of view of application performance and locality of

behavior. However, such a module would be extremely difficult to isolate from the rest

of the application for the rigorous security analysis required. Moreover, performance and

metrics logs for implementation attacks would be easier to obtain for such a kernel. This

design also means that the application will act as a wrapper around this kernel, allowing

it to be manipulated without affecting the cryptographic functions.

Language

C. Low-level languages will enable strong performance and hardware-level optimizations,

as well as strong type safety.

Components

Implementations of the following interfaces from scratch:

1. Hashing interface – hashing function

2. KEM/DPKE interface – keypair generation, key generation, encrypt, decrypt,

encapsulate, decapsulate

3. Digital Signature interface – sign, verify

12

3.2 State Module

3.2 State Module

To better integrate this kernel with any application, a dedicated state machine can be

implemented that will handle the state of data at any point in time, providing safe inter-

faces to other modules. This module is not pure, as state will be modified here. However,

to hedge against the problems of object-oriented architecture, we will define and enforce

custom types of required structures in functions and handle side effects on the client side.

Reason

Upon any CRUD operation, the application state has two disjoint sides for a short amount

of time – the one that is rendered and shown to the user (interface value) and the actual

state of the value updated after the round trip to the database. This small time is

not insignificant and presents a crucial roadblock to good user experience. Additional

processing on that data might be needed before and/or after the data is sent to and

received from the database. A dedicated state module will take care of this processing

and side-effects as a performant module reserved for this purpose. Strong type safety

and testing will isolate the security issues of application state from the database. This is

important because we are not performing a simplistic hash on the password that can be

done directly at the site of the database methods themselves. The cryptographic kernel

will handle the necessary cryptographic processes.

Components

• User type – contains attributes such as email address

• Identity type – separates archival of public keys for verifying digital signatures

after keypair expiration, stored in the Identity type

3.3 Other Modules Considering Application

1. Network module –The network module will be responsible for handling secure

communication between the application, the cryptographic kernel, and external sys-

tems. This involves request filtering, firewall integration, and managing network

protocols to ensure the confidentiality and integrity of data in transit. The module

13

Proposed Model

will act as the first line of defense, filtering out malicious requests and performing

firewall-level checks before any sensitive data reaches the cryptographic kernel.

2. Web extension – The network module will be responsible for handling secure com-

munication between the application, the cryptographic kernel, and external systems.

This involves request filtering, firewall integration, and managing network protocols

to ensure the confidentiality and integrity of data in transit. The module will act as

the first line of defense, filtering out malicious requests and performing firewall-level

checks before any sensitive data reaches the cryptographic kernel.

Components:

(a) SSO Interface – integrates with third-party SSO providers, enabling seamless

authentication across multiple services while maintaining the security of the

user’s identity.

(b) Password Reset and Credential Generation Interface – securely man-

ages password reset workflows, and generates new credentials using strong

cryptographic primitives, ensuring that users can easily recover access while

protecting their data.

(c) Multimedia Signature Interface – signs multimedia content (images,

videos, documents) to ensure the authenticity and integrity of digital assets.

This component interacts with the cryptographic kernel for signing operations,

ensuring that all signatures are verifiable.

14

C H A P T E R 4

Methodology

⃝

This chapter outlines a rigorous methodology for designing, implementing, and analyzing

a cryptographically secure system with resilience against both classical and quantum

adversaries. The approach emphasizes modularity, verifiability, and side-channel re-

sistance through a layered architecture consisting of a hardened cryptographic kernel,

state management modules, and carefully abstracted network interfaces. Security

considerations are woven into each phase, from algorithmic selection (CRYSTALS-Kyber

and Dilithium) to low-level implementation choices such as static memory allocation and

deterministic control flow. The methodology further incorporates advanced statistical

techniques, including Welch’s t-test and Mahalanobis distance analysis, to empirically

validate timing invariance and detect multidimensional leakage vectors. By systematically

isolating concerns and subjecting each component to formal or statistical scrutiny, this

framework aims to achieve IND-CCA3 security while maintaining practical performance.

The following sections detail the architectural decisions, cryptographic foundations,

and evaluation mechanisms that collectively address both functional correctness and

implementation security.

⃝

15

Methodology

4.1 Approach

The systematic approach adopted in this research integrates design, development, and

analysis phases in a modular fashion to ensure separation of concerns, cryptographic

security, and adaptability. The system is implemented in a layered architecture composed

of a low-level cryptographic kernel, a state management module, and network interfaces.

Each layer is independently verifiable and designed to be subjected to formal or statistical

security analysis. The cryptographic kernel is developed in C for performance profiling

and in-depth instrumentation, which aids in both functional correctness and side-channel

leakage assessment.

The application stack wraps around the kernel through Foreign Function Interfaces

(FFI), ensuring minimal exposure of sensitive logic to potentially vulnerable layers. Test-

ing, logging, and benchmarking are systematically integrated using custom harnesses to

isolate cryptographic operations, particularly during key encapsulation, decapsulation,

and digital signing/verification steps.

4.2 Design Considerations

The architectural decisions are rooted in modularity, performance, and isolation principles.

The cryptographic kernel is developed in pure C without dynamic memory allocation

to reduce complexity and exposure to memory-based vulnerabilities. All cryptographic

operations are statically linked and confined to this kernel. Statelessness is maintained as

far as possible to allow deterministic behavior and easier reproducibility.

To mitigate timing and side-channel vulnerabilities, the kernel includes deterministic

branching and cache-aware data access patterns. Further, to facilitate analysis, each

operation is wrapped with time measurement hooks and benchmark counters during the

testing phase. An external state module written in a high-level language interfaces with

this kernel and manages data transformations and concurrency effects introduced by the

runtime system or user interface.

Moreover, data serialization and network communication routines are defined outside

the cryptographic scope, with pre- and post-processing functions invoked in a defined

lifecycle sequence. All inputs and outputs of the kernel are strictly typed and bounded to

16

4.3 Cryptographic Considerations

prevent buffer overflows and malformed data attacks.

4.3 Cryptographic Considerations

The security model assumes IND-CCA3 resilience as the target property, particularly for

KEM operations. Cryptographic primitives are selected based on post-quantum crypto-

graphic standards, specifically CRYSTALS-Kyber for KEM and CRYSTALS-Dilithium

for digital signatures. Hashing functions are derived from SHAKE256 (XOF) and imple-

mented using precomputed round constants for efficiency and reduced memory load.

To validate these primitives in practice, the following processes are enforced:

• All key generation routines are validated against FIPS 203 vectors.

• Signature verification includes expiry and archival checks for identity rotation.

• Decapsulation failure is handled securely to avoid leakage from control flow patterns.

Security goals are twofold: (i) resistance against quantum-enabled adversaries using

cryptographically hard problems, and (ii) implementation security against physical or

side-channel adversaries.

4.3.1 Timing Attack Evaluation

A dedicated timing analysis harness is developed to empirically measure the execution time

of sensitive operations across thousands of controlled invocations. Each primitive (e.g.,

kem decapsulate) is executed with both valid and malformed ciphertexts in a randomized

schedule to avoid temporal patterns.

The time is measured using the clock gettime(CLOCK MONOTONIC RAW, ...) inter-

face for nanosecond granularity and precision. Timing traces are collected under controlled

conditions to limit noise from scheduler interference and hardware prefetchers.

The obtained timing dataset is then analyzed statistically using a Welch’s t-test and

Cohen’s d value to identify any significant deviation in execution profiles. If distinguishable

timing behavior is observed (p ¡ 0.05, d ¿ 0.2), mitigations such as branch flattening,

constant-time lookup tables, or masking are applied.

17

Methodology

4.3.2 Statistical Space Evaluation using Mahalanobis Distance

To detect high-dimensional statistical leakage beyond first-order timing discrepancies, we

analyze the operational state space via Mahalanobis distance. This statistical technique

allows comparison between execution profiles by taking into account the covariance of the

observed features.

Let x be a timing or resource usage vector of an operation (e.g., cycles taken, branch

count, cache hits), and µ the mean vector of the class (valid or invalid ciphertext), and Σ

its covariance matrix. Then:

DM(x) =
√

(x− µ)TΣ−1(x− µ)

This distance metric accounts for inter-feature dependencies, which are crucial in de-

tecting subtle leakages that univariate analysis (e.g., t-tests) might miss.

A statistical profile is trained on known secure operations. Subsequent samples are

then measured and compared. A threshold T is empirically determined such that:

DM(x) > T ⇒ Potential leakage / distinguishability

This methodology enables detection of micro-architectural or implementation-related

leakage vectors that might otherwise evade conventional testing.

18

C H A P T E R 5

Requirements

⃝

This chapter lists system software and hardware requirements. To ensure successful

deployment and execution of the digital identity system software, certain system require-

ments must be met. While these are not legally binding, they serve as a recommended

baseline configuration to achieve reliable, secure, and reproducible results. The software

components listed below are widely available and scalable, reducing the friction in both

development and deployment stages.

⃝

19

Requirements

While not binding in any real sense, the following are some requirements for the digital

identity system software to run on. These requirements are easily available and scalable,

making the results reproducible. The only exception these advantages is the node.js

binary’s version requirement - it is restricted to 18.9.0 for at least installing the ffi-napi

and ref-napi libraries that act as Foreign Function Interfaces (FFIs) for the C code to run

on. After installing these libraries however, one can switch back to the most recent version

to benefit from latest recent security patches and software updates. We do recommend

using node version manager (nvm) for the same, although that is certainly not required.

5.1 Software Requirements

• Operating System: Linux (UNIX-based), preferably Debian 12 Bookworm for

consistent package support.

• Compiler Tools: gcc, make – essential for compiling C code and handling build

processes.

• Node.js Binaries: Version 18.9.0 (mandatory during ffi-napi installation).

• Node Libraries: ffi-napi, ref-napi.

• Web Browser: A modern browser based on the Chromium V8 engine, such as

Google Chrome or Microsoft Edge.

5.2 Hardware Requirements

• Machine Type: Intel Haswell-based Virtual Machine (VM) hosted on Google

Cloud Platform (GCP).

• Memory: Minimum 4 GB RAM to handle development and runtime workloads.

• CPU: Shared virtual CPU (suitable for development and lightweight production

use).

• Storage: Minimum 10 GB boot disk for operating system, dependencies, and

project files.

20

C H A P T E R 6

Architecture

⃝

This chapter describes the system architecture, which is designed as a composition of

formally verifiable cryptographic modules and stateful interfaces, each enforcing strict

security boundaries while maintaining interoperability. At its core lies a Cryptographic

Kernel implementing lattice-based primitives (CRYSTALS-Kyber for KEM and Dilithium

for signatures) with hardness rooted in Module-LWE and Module-SIS problems. This

kernel operates in an isolated execution environment with constant-time guarantees,

around which higher-level components are organized as stateless wrappers. The State

Module mediates between this kernel and user-facing interfaces, including both web clients

and browser extensions, while enforcing zero-knowledge proof attestations via Groth16

circuits. Each architectural layer adheres to the principle of least privilege: the kernel

handles only raw cryptographic operations, the state module manages session persistence

and ZKP verification, and UI components render isolated views without direct crypto

access. This decomposition enables independent security analysis of the mathematical

foundations (MLWE/MSIS problems), protocol implementations (Kyber/Dilithium),

and application logic (web extensions with ZKP-backed assertions) while maintaining

end-to-end cryptographic integrity.

⃝

21

Architecture

The architectural framework of the proposed system is characterized as modular, highly

scalable, and focused on protecting security from all threats posed by quantum attacks-

but in such a manner that aims not to compromise user privacy. The ease with which

scalability and its modifications can be made throughout all components also supports

the careful implementation of the necessary security protocols at a granular level. The

software architecture consists of

1. the cryptographic kernel

2. the state module

3. the application itself

More generally, the fundamental context of this architecture is considered the vast

Chromium-based ecosystem of browsers and their applications. The architectural de-

sign employs zero-knowledge proofs (ZKP) through a customized layer built for browser

contexts. This will provide the secure authentication of users and yet offer confidentiality

of the sensitive information. The user-facing element comprises a browser-centric inter-

face. It works efficiently with the Chromium V8 engine. It supports functionalities, such

as SSO, identity verification, and credential management. Additionally, this interface is

supported by content security policies and HTTPS protocols. At the backend, a Node.js-

built server serves as the middle layer connecting the front end to the crypto kernel core

by use of packages like ffi-napi and ref-napi that support interaction with the low-level

primitives from the crypto. In addition to this, a minimum of a database is added to

have metadata needed for its operation without storing the sensitively private user data

that usually comes with high privacy requirements and hence imposes heavy restriction.

Architectural framework also incorporates a full package of testing as well as logging pro-

tocols, mainly used to validate cryptography operations, measure performance metrics,

and identify any anomalies. In summary, the architecture provides a secure and efficient

yet accessible digital identity system with high immunity against some challenges issued

by quantum computing.

22

6.1 Cryptographic Kernel

Figure 6.1: Software Architecture of the Digital Identity System

6.1 Cryptographic Kernel

An end-user-sensitive security system would, therefore, be likely to take up a modular de-

sign, allowing its components to remain in accordance with the principles of concern sep-

aration. In this regard, the architecture proposed takes the form of having a well-defined

cryptographic kernel that will contain all the needed cryptographic functions within a

single, well-isolated module. It has only a limited set of libraries and holds its static data

as the state for other modules, thus carrying out sharp lines of demarcation between the

cryptography process and application logic. This modularization simplifies intense security

analyses, such as testing against NIST KATs; performance benchmarks, and standards,

such as IND-CCA3. Independently fielding crypto-processes would allow for honest-to-

goodness validity checks for correctness and robustness without interference from higher

layers of application. In addition, measurements and logging about performance and

implementation attacks might be made unobtrusively, thus on-the-fly optimization and

fortification might be done. Though combining all functionality into a single application

may result in benefits related either to performance or to behavioural locality, there are

significant costs entailed in identifying suitable techniques for effectively isolating these

components in order to thoroughly discuss any security implementation. A cryptographic

kernel facilitates this process by functioning as an independent module where the applica-

tion offers only a superficial layer of protection. This split clearly does permit the appli-

23

Architecture

cation to adapt and become modified without jeopardizing cryptographic integrity. The

kernel is written in C, chosen for the advantageous performance as well as hardware-level

optimization opportunities, along with strong type safety. The core parts of the kernel

include interfaces shaped to hashing functions, key encapsulation mechanisms (KEMs),

deterministic public-key encryption (DPKE), and digital signature procedures. The in-

terfaces enable key-pair generation, encryption, decryption, signing, and verification of

critical functions conducted bottom-up in conformance with post-quantum cryptographic

standards and to provide a high-level view of sensitive security-related operations.

6.2 Cryptosystems employed

6.2.1 CRYSTALS-Kyber

Description

CRYSTALS-Kyber is a lattice-based Key Encapsulation Mechanism (KEM) that has been

chosen for standardization by NIST as part of the post-quantum cryptography suite. It

is based on the hardness of the Module Learning with Errors (MLWE) problem, which

is a generalization of the well-known Learning with Errors (LWE) problem. Kyber offers

efficient key generation, encapsulation, and decapsulation algorithms and is designed for

high performance and small communication overhead, making it suitable for practical use

in secure communications.

Algorithms

Algorithm 1 Key Generation
1: Input: None
2: Output: Public key pk, Secret key sk

3: Generate random seed seed and derive A using a hash function
4: Sample secret vector s and error vector e
5: Compute b = A · s + e
6: Set pk = (A,b)
7: Set sk = s
8: return pk, sk

24

6.2 Cryptosystems employed

Algorithm 2 Encapsulation

1: Input: Public key (A,b), Message m

2: Output: Ciphertext ct, Shared secret ss

3: Sample random vector r and error vectors e1, e2

4: Compute u = A · r + e1

5: Compute v = b · r + e2

6: Encrypt message m to produce ciphertext ct = (u,v)

7: Derive shared secret ss from m using a hash function

8: return ct, ss

Algorithm 3 Decapsulation

1: Input: Ciphertext ct = (u,v), Secret key s

2: Output: Shared secret ss

3: Compute v′ = u · s
4: Recover message m from v′ and v

5: Derive shared secret ss from m using a hash function

6: return ss

25

Architecture

6.2.2 CRYSTALS-Dilithium

Description

CRYSTALS-Dilithium is a post-quantum digital signature scheme based on the MLWE

and Module Short Integer Solution (MSIS) problems. It provides secure and efficient

digital signatures for applications that require authentication and data integrity.

Algorithms

Algorithm 4 Key Generation
1: Input: None

2: Output: Public key pk, Secret key sk

3: Generate matrix A using a random seed

4: Sample secret vectors s1, s2 from a discrete Gaussian distribution

5: Compute t = A · s1 + s2

6: Set pk = t and sk = (s1, s2)

7: return pk, sk

Algorithm 5 Signing

1: Input: Message m, Secret key (s1, s2), Matrix A

2: Output: Signature σ = (z, c, hint)

3: Sample random vector y from a discrete Gaussian distribution

4: Compute w = A · y
5: Use hash function H to derive challenge c from m and w

6: Compute response z = y + c · s1
7: if z is not short then

8: Restart the process

9: end if

10: Compute side information hint

11: return σ = (z, c, hint)

26

6.3 Mathematical Basis for CRYSTALS Algorithms

Algorithm 6 Verification

1: Input: Message m, Signature σ = (z, c, hint), Public key t, Matrix A

2: Output: Valid / Invalid

3: Compute w′ = A · z− c · t
4: Use hint to adjust w′ and compare with w

5: if z is within bounds and checks pass then

6: return Valid

7: else

8: return Invalid

9: end if

6.3 Mathematical Basis for CRYSTALS Algorithms

6.3.1 Module Learning With Errors (MLWE) Problem

The Module Learning With Errors (MLWE) problem is a generalization of the Learning

With Errors (LWE) problem, extended to module lattices. It is defined as follows:

Problem Definition

Let R = Z[x]/⟨f(x)⟩ be a ring where f(x) is a monic polynomial of degree n. Let q be a

positive integer, and let χ be an error distribution over Rq = R/qR. The MLWE problem

is parameterized by:

• Dimension k ∈ N

• Modulus q

• Error distribution χ

Instance Generation

Given a uniformly random matrix A ∈ Rk×k
q and a secret vector s ∈ Rk

q , the MLWE

instance is generated by:

b = A · s + e mod q,

where e ∈ Rk
q is sampled from the error distribution χ.

27

Architecture

Decision Version

The decision version of the MLWE problem asks to distinguish whether a given pair (A,b)

is:

• A valid MLWE instance, i.e., b = A · s + e for some s ∈ Rk
q and e ∈ Rk

q sampled

from χ, or

• A uniformly random pair (A,b).

6.3.2 Module Short Integer Solution (MSIS) Problem

The Module Short Integer Solution (MSIS) problem is a generalization of the Short Integer

Solution (SIS) problem, extended to module lattices. It is defined as follows:

Problem Definition

Let R = Z[x]/⟨f(x)⟩ be a ring where f(x) is a monic polynomial of degree n. Let q be a

positive integer. The MSIS problem is parameterized by:

• Dimension k ∈ N

• Modulus q

• Norm bound β

Instance Generation

Given a uniformly random matrix A ∈ Rk×k
q , the MSIS problem is defined as finding a

non-zero vector x ∈ Rk such that:

A · x = 0 mod q and ∥x∥ ≤ β,

where ∥ · ∥ is a suitable norm (e.g., Euclidean norm or infinity norm).

Hardness Assumptions

The hardness of both MLWE and MSIS is based on worst-case to average-case reductions

for problems on ideal and module lattices. These problems are believed to be hard even

for quantum computers.

28

6.4 State Module

6.4 State Module

A state module is recommended especially to oversee the data state management at any

given point in time, thus ensuring seamless integration between the cryptographic kernel

and the larger application. This module functions as a conduit, offering secure and uniform

interfaces that enable other application components to engage with the system’s state. In

contrast to a purely cryptographic kernel, the state module alters and preserves data,

thereby rendering it inherently mutable. Nonetheless, to address challenges typically

associated with object-oriented architectures, custom types and stringent structures will

be delineated and enforced for all necessary functions. It ensures that side effects are

handled on the client side, thus isolating cryptographic operations, and protecting them

from side or accidental interference. The state module addresses one of the fundamental

challenges of modern applications: that the interface-rendered state presented to users’

needs to differ from the real state updated behind the scenes after database round trips.

This minor deviation, although brief, can have a significant impact on user experience and

system reliability. Additional processing of secondary data may also be required either

before sending to or after receiving from the database. Centralizing these operations

further ensures that the state module acts as a good intermediary, eliminating latency

and efficiently dealing with side effects. It also increases security by segregating issues

related to application-state from that of the database. In this context, because of the

particular cryptographic processes used, it is impossible to assume simple hashing from a

database standpoint.

6.5 User Interface Components

Both components emphasize usability, security, and seamless integration with the backend

services. Usage of modern web technologies such as Tailwind CSS and JavaScript aim to

provide a responsive and dynamic user experience.

6.5.1 Web Client

The Web Client is designed for user registration and secure identity management through

a modern browser-based application.

29

Architecture

Landing Page

• Header:

– Title: Digital Identity Registration

– Description: “Secure Registration”

• Registration Form:

– Fields:

∗ Email Address (with validation for proper format)

∗ SAP ID (11-digit numeric input validation)

∗ Age (minimum: 18)

– Submit Button:

∗ Triggers Zero-Knowledge Proof (ZKP) generation, verification, and user

registration.

– Verification Status:

∗ Displays a progress indicator during the registration process.

Client-Side Features

• Zero-Knowledge Proof Generation:

– Uses snarkjs to generate and verify cryptographic proofs.

– Ensures input confidentiality while verifying claims.

• Registration Process:

– Communicates with backend endpoints to securely generate and register a dig-

ital identity.

• Error Handling:

– Alerts for invalid inputs or process failures.

• Session Management:

– Sets cookies for session persistence.

30

6.5 User Interface Components

6.5.2 Web Extension

The Web Extension provides seamless integration with the user’s browser for enhanced

identity management functionalities.

Landing View

• Welcome Screen:

– Title: Welcome to Digital Identity

– Description: “Your secure identity management solution”

– “Get Started” Button: Redirects users to the registration page.

Home View

• User Information:

– Displays user email.

• Website Interaction:

– Shows the active website domain.

– “Generate Password” Button:

∗ Triggers the password generation process based on website-specific require-

ments.

– Displays generated password in a secure container.

• Logout Button:

– Clears session cookies and redirects to the landing view.

Features

• Password Generation:

– Interacts with VM endpoints to generate secure, site-specific passwords based

on detected requirements.

– Automatically injects passwords into login forms where possible.

31

Architecture

• Password Requirements Detection:

– Injects scripts into the current tab to analyze form requirements.

– Extracts and adheres to constraints like minimum length, special characters,

or uppercase letters.

• Session Management:

– Handles user authentication state through cookies.

– Supports logout functionality to clear session data.

6.6 Zero-Knowledge Proof Module

The module is designed to verify sensitive attributes, specifically age and SAP ID, without

disclosing the raw data or storing it. The architecture leverages Zero-Knowledge Proofs

(ZKPs) based on Groth16, a succinct, non-interactive proof system compatible with zk-

SNARKs.

6.6.1 Theoretical Foundations

Zero-Knowledge Proofs (ZKPs)

ZKPs enable one party (the prover) to convince another party (the verifier) that a state-

ment is true without revealing any underlying information. This is particularly useful for

verifying sensitive data such as age or ID attributes in a privacy-preserving manner.

Groth16 Protocol

The Groth16 protocol is used for proving computational integrity efficiently. It involves

three primary phases:

1. Setup: Establishes cryptographic parameters for a specific computation circuit.

2. Proving: Generates a proof that a given computation is valid based on the circuit

and inputs.

3. Verification: Confirms the proof’s validity using publicly known parameters.

32

6.6 Zero-Knowledge Proof Module

Circuit Design

The circuit defines the logic of the proof, encoded mathematically. For this module:

• Age verification ensures the provided age is ≥ 18.

• SAP ID verification checks the first digit of the SAP ID is ≥ 6.

• Boolean constraints enforce that the outputs (isAgeValid and isSAPValid) are

binary.

The circuit uses the following template:

GreaterEqThan: out←

1 if in0 ≥ in1

0 otherwise

6.6.2 Security Considerations

• The cryptographic setup ensures that no information about the inputs (age and SAP

ID) is leaked.

• The Groth16 protocol is resistant to quantum attacks under current assumptions.

33

C H A P T E R 7

Implementation

⃝

This chapter describes the concrete implementation of cryptographic primitives and

zero-knowledge proof systems, bridging theoretical foundations with engineering realities.

The CRYSTALS-Kyber and Dilithium implementations are rigorously derived from their

mathematical bases—Module-LWE for Kyber’s KEM and Module-SIS for Dilithium’s

signatures—with careful attention to constant-time execution and side-channel resistance.

Each primitive’s reference implementation is analyzed for both functional correctness (via

NIST test vectors) and computational efficiency (through cycle-accurate profiling). The

zero-knowledge proof system implements Groth16 circuits over BN254 curves, optimizing

for succinct verification while maintaining non-interactive soundness. Code examples

demonstrate critical operations: Kyber’s CPA-secure key encapsulation, Dilithium’s de-

terministic key derivation, and ZKP circuit constraints for identity assertions. Together,

these components form a vertically integrated stack where algorithmic strength (lattice

assumptions), implementation hygiene (memory safety, timing invariance), and protocol

security (ZK proof composition) are enforced at every layer.

⃝

35

Implementation

7.1 CRYSTALS-Kyber

7.1.1 Overview

CRYSTALS-Kyber is a lattice-based key encapsulation mechanism (KEM) designed as

part of the CRYSTALS (Cryptographic Suite for Algebraic Lattices) project. This project

aims to develop secure, efficient, and quantum-resistant cryptographic schemes. Kyber,

specifically, addresses the need for post-quantum secure key exchange.

The development of Kyber was motivated by the increasing threat posed by quantum

computers, which can efficiently break classical cryptographic schemes relying on the

hardness of problems like integer factorization and discrete logarithms. Kyber leverages

the Module Learning With Errors (MLWE) problem, a lattice-based problem believed to

be hard even for quantum computers.

Kyber gained significant attention during the NIST Post-Quantum Cryptography

(PQC) Standardization Process, where it emerged as one of the finalists and was even-

tually selected for standardization in 2022. Its combination of security, efficiency, and

practicality makes it suitable for a wide range of applications, including secure communi-

cation and data encryption.

7.1.2 Mathematical Foundations

Kyber operates over the ring Rq = Zq[x]/⟨xn + 1⟩, where n is a power of 2. The main

steps in the key exchange process are:

1. Key Generation: Generate a secret matrix s and a uniformly random matrix A.

Compute the public key b = A · s + e, where e is sampled from a small error

distribution.

2. Encapsulation: Compute a ciphertext c that encrypts a randomly chosen message

m using the public key.

3. Decapsulation: Recover the shared secret m from the ciphertext c using the secret

key s.

36

7.1 CRYSTALS-Kyber

7.1.3 Reference Implementation Details

The reference implementation of Kyber uses:

• Polynomial arithmetic over Rq, optimized with Number Theoretic Transform (NTT)

for efficient polynomial multiplication.

• Byte-packing techniques to ensure compact key and ciphertext representations.

• Randomized sampling functions to securely generate secrets and errors.

7.1.4 Strengths

• Efficient key sizes and fast operations, making it suitable for constrained environ-

ments.

• Strong theoretical guarantees based on reductions to MLWE.

• Resistant to side-channel attacks through carefully implemented constant-time op-

erations.

7.1.5 Code Example

Below is a simplified snippet illustrating polynomial multiplication in Kyber:

// Polynomial mu l t i p l i c a t i o n us ing NTT

void p o l y n t t (i n t 1 6 t ∗ r , const i n t 1 6 t ∗a) {
// NTT implementat ion d e t a i l s

for (int i = 0 ; i < N; i++) {
r [i] = compute ntt (a [i]) ;

}
}

37

Implementation

7.2 CRYSTALS-Dilithium

7.2.1 Overview

CRYSTALS-Dilithium is a lattice-based digital signature scheme that was developed as

part of the CRYSTALS project. Like Kyber, Dilithium was designed to address the

vulnerabilities of classical cryptographic schemes in the face of quantum computing ad-

vancements.

The design of Dilithium builds on lattice-based cryptographic techniques, specifically

the Module Short Integer Solution (MSIS) and Module Learning With Errors (MLWE)

problems. These problems provide strong security guarantees, rooted in the worst-case

hardness of solving problems on structured lattices.

Dilithium became a prominent candidate in the NIST PQC Standardization Process,

ultimately being selected for standardization alongside Kyber in 2022. Its efficiency, com-

pact signature sizes, and robust security properties have made it a leading choice for

quantum-resistant digital signatures.

7.2.2 Mathematical Foundations

Dilithium uses the same ring Rq = Zq[x]/⟨xn + 1⟩ as Kyber. The key processes include:

1. Key Generation: Generate a secret key s and public key A · s.

2. Signing: Generate a signature z such that A ·z encodes the message m with added

randomness.

3. Verification: Check if A · z matches the encoding of m.

7.2.3 Reference Implementation Details

The reference implementation of Dilithium includes:

• Rejection sampling to ensure small-norm signatures.

• Compression techniques to reduce signature size.

• Constant-time arithmetic for resistance against timing attacks.

38

7.3 Identity Generation Algorithm

7.2.4 Strengths

• Provable security based on worst-case lattice problems.

• Compact signatures with fast signing and verification.

• Parameter tunability for different levels of security and performance.

7.2.5 Code Example

Below is a snippet of the rejection sampling function:

// Re jec t ion sampling f o r smal l−norm s i gna t u r e s

int r e j e c t s a m p l e (const i n t 1 6 t ∗z) {
for (int i = 0 ; i < N; i++) {

i f (z [i] > BOUND) {
return 1 ; // Rejec t sample

}
}
return 0 ; // Accept sample

}

7.3 Identity Generation Algorithm

7.3.1 Description

This identity generation algorithm derives a unique identity keypair from two well-

established post-quantum primitives:

• Kyber (specifically Kyber-768): A lattice-based key encapsulation mechanism

(KEM) for secure key exchange.

• Dilithium (e.g., Dilithium-3): A lattice-based digital signature scheme.

The goal is to combine their respective keypairs into a single deterministic identity

keypair via a cryptographic hash function. This keypair can then serve as a unified

identity in a post-quantum secure system, suitable for authentication, authorization, or

identity-bound encryption.

39

Implementation

7.3.2 Algorithm

Algorithm 7 Identity Generation

1: function GenerateIdentityKeys(identity pk, identity sk)

2: Allocate kyber pk, kyber sk

3: Allocate dilithium pk, dilithium sk

4: kyber success← crypto kem keypair(kyber pk, kyber sk)

5: if kyber success ̸= 0 then

6: return error code −1

7: end if

8: dilithium success← crypto sign keypair(dilithium pk, dilithium sk)

9: if dilithium success ̸= 0 then

10: return error code −2

11: end if

12: pk seed← Concat(kyber pk, dilithium pk)

13: if allocation fails then

14: return error code −3

15: end if

16: sk seed← Concat(kyber sk, dilithium sk)

17: if allocation fails then

18: Free pk seed

19: return error code −4

20: end if

21: identity pk ← SHAKE256(pk seed)

22: identity sk ← SHAKE256(sk seed)

23: Free pk seed and sk seed

24: return 0

25: end function

7.3.3 Mathematical Basis

Let: pkK , skK be the public and secret keys from Kyber pkD, skD be the public and

secret keys from Dilithium | denote byte-wise concatenation SHAKE256(m, ℓ) denote the

40

7.3 Identity Generation Algorithm

SHAKE256 extendable-output function with input m and output length ℓ ℓpk and ℓsk be

the lengths of the final identity public and secret keys respectively (e.g., 64 or 128 bytes).

7.3.4 Error Handling

• If the email address is missing, the function returns a 400 status code with an error

message.

• If Kyber or Dilithium key pair generation fails, the function returns a 500 status

code with an error message.

• If an internal server error occurs, the function returns a 500 status code with an

error message.

Hence, each identity has an associated Dilithium signing key. This key is used to sign:

• Credential requests (e.g., requesting a verifiable credential from an issuer)

• Challenge-responses for authentication

• Attribute disclosures in selective disclosure protocols

• Delegation attestations (e.g., granting temporary control to a sub-identity)

The signed data structure is typically a hash of context || request-type ||
metadata || timestamp which prevents replay and ensures contextual integrity.

Each identity also includes a Kyber KEM key pair, which is used to:

• Establish end-to-end encrypted communication channels between identities

• Encrypt session keys used in authenticated data transfers

• Store encrypted state (e.g., backup identity material in the cloud, encrypted with a

derived symmetric key using Kyber shared secret)

Kyber is not used directly to encrypt large payloads; rather, it is used to establish shared

secrets for symmetric encryption (e.g., AES-GCM). The table 7.1 compares traditional

public-key infrastructure systems with the proposed system.

41

Implementation

Feature Traditional PKI Proposed System
Rooted Key Hierarchy X.509 CA Master-seed derived (HD-style)
Post-Quantum Readiness No Kyber + Dilithium
Identity Binding Email / Name SHAKE256 of (PKKyber ∥ PKDilithium)
Lightweight Deployment No (Heavy Infrastructure) C-based kernel, embeddable
Revocation Mechanism OCSP / CRL Local + Signed Revocation List
Zero-Knowledge Support No Planned Selective Disclosure

Table 7.1: Comparison of Identity System Features

7.4 Key Derivation Function

7.4.1 Description

This KDF generates an output key of specified length by iteratively applying the ‘shake256‘

hash function. A counter ensures that each block of the output is derived from a unique

input, guaranteeing the pseudo-randomness of the resulting key material.

7.4.2 Mathematical Basis

The KDF can be expressed as:

K = Concat(H(I∥0), H(I∥1), . . . , H(I∥(n− 1)))

where:

• H: The ‘shake256‘ hash function.

• I: The input seed of length inlen.

• L: Desired output length (outlen).

• n = ⌈L/32⌉: Number of blocks.

• ∥: Denotes concatenation.

• c: Counter appended to I to ensure uniqueness for each hash invocation.

42

7.5 Zero-Knowledge Proofs

7.4.3 Algorithm

Algorithm 8 Key Derivation Function

Require: Input seed I, seed length inlen, desired output length outlen

Ensure: Derived key K of length outlen

Allocate a buffer buf of size inlen + 1

Copy input seed I into buf

Initialize counter buf[inlen] = 0

for i = 0 to ⌊outlen/32⌋ − 1 do

K[i]← shake256(buf, inlen + 1, 32)

Increment counter buf[inlen]← buf[inlen] + 1

7: end for

Free buf return K

The key derivation preserves practical forward secrecy, where even if the system had per-

sistently stored secrets - which it doesn’t - leak or breach of one secret does not compromise

others.

7.5 Zero-Knowledge Proofs

7.5.1 Overview

The implementation combines the cryptographic protocol with a practical circuit definition

and code modules. The key components are:

• Circuit Definition: Encoded using Circom for arithmetic constraints.

• Prover and Verifier Functions: Written in JavaScript using the snarkjs library.

• Setup and Key Generation: Groth16 setup files are generated to support the

proof generation and verification processes.

43

Implementation

7.5.2 Circuit

Circom is a domain-specific language (DSL) and associated compiler used to define arith-

metic circuits to build zero-knowledge (ZK) proofs. It allows users to design circuits with

constraints expressed as linear combinations of signals, ultimately generating a represen-

tation suitable for use in ZK proof systems like zk-SNARKs. The Circom code at A.1.1

defines the verification logic. The generation process creates the proof based on the input

and the circuit enforced whereas verification process ensures the integrity of the proof.

The implementations for the same are at A.1.2 and A.1.3 respectively. The setup can

generate all the necessary files for proof generation and verification. The bash script for

the same is at A.1.4.

7.5.3 Security Features in Implementation

• Input values (age and SAP ID) are processed locally without exposure.

• The circuit enforces strict constraints to prevent invalid proofs.

• Random contributions during setup ensure resistance to external inference.

44

C H A P T E R 8

Experimentation

⃝

This chapter details the experimental methodology for the performance and leakage

analysis of post-quantum cryptographic primitives. We focus on the custom scenario of

the proposed digital identity algorithm based on two NIST PQC finalists: CRYSTALS-

Kyber (KEM) and CRYSTALS-Dilithium (Digital Signature). The aim is to identify

and characterize micro-architectural timing side-channels using statistical profiling and

anomaly detection.

⃝

45

Experimentation

8.1 Approaches

In order to detect potential microarchitectural leakages and timing side channels, we

adopt a statistical fingerprinting approach. Known secure cryptographic operations are

used to train a baseline timing profile across multiple iterations. Each sample comprises

cycle timings measured after specific steps in the CRYSTALS-Kyber and CRYSTALS-

Dilithium key exchange and signing protocols. The goal is to model secure behavior and

detect deviations that could indicate leakage.

Measurements were taken on a controlled hardware platform using high-resolution

timers. Each run recorded timings for the following steps: after kyber,

after dilithium, after id pk s, after id sk s, along with additional steps such as

after id pk c, after id sk c, and end. An iteration count was maintained for plotting

and anomaly localization.

To empirically identify distinguishable patterns, a Mahalanobis distance metric was

adopted:

DM(x) =
√

(x− µ)TΣ−1(x− µ)

An empirical threshold T was selected such that if DM(x) > T , the sample x was flagged

as anomalous. This method facilitates the detection of deviations that may indicate

cryptographic leakage even in low-noise environments.

8.2 Data Collection Methodology

Timing traces were collected across multiple iterations of secure cryptographic operations.

Each iteration consisted of:

• after kyber – Timing after encapsulation/decapsulation (Kyber768).

• after dilithium – Timing after signing/verifying (Dilithium3).

• after id pk s – Timing after secret key access (ID).

• after id sk s – Timing after public key access (ID).

Measurements were collected via a high-resolution timer, isolated CPU core affinity,

and flushed cache lines to simulate adversarial observation conditions.

46

8.3 Timing Attack Experiment

8.3 Timing Attack Experiment

Timing measurements were recorded for the post-quantum cryptographic primitives

CRYSTALS-Kyber and CRYSTALS-Dilithium across 100,000 iterations. These were run

in isolation and within identity kernel calls, which represent calls to cryptographic sub-

routines from the system layer.

The timing values were visualized using boxplots and distribution histograms. Outliers

were identified via Z-score analysis and Mahalanobis distance in a 2-dimensional PCA-

reduced feature space. Correlation analysis among steps was also conducted to detect

possible co-variability, which may point to shared leakage sources.

A Principal Component Analysis (PCA) was employed to reduce dimensionality and

isolate primary components contributing to variance. This also allowed for heatmap-

based visualization of component loadings, thereby elucidating which steps most influence

anomaly detection.

Finally, Welch’s t-test and Cohen’s d effect size were computed for identified outliers

to quantify statistical distinguishability from the baseline.

47

C H A P T E R 9

Results

⃝

This chapter presents research findings. The empirical validation of this system employs a

multi-modal analytical framework to detect both macroscopic performance patterns and

microscopic cryptographic anomalies. By combining outlier detection (via Mahalanobis

distance) with principal component analysis, we evaluate the system’s behavior across

two critical dimensions: operational reliability under stress conditions and resistance to

side-channel leakage. Statistical testing protocols, including Welch’s t-test for timing

distributions and χ2 tests for algorithmic constant-timeness, provide quantifiable evidence

of the implementation’s adherence to post-quantum security requirements. This dual

focus on functional correctness (through anomaly detection in formal test vectors) and

implementation security (via multivariate analysis of execution traces) establishes a

comprehensive assessment methodology that bridges theoretical cryptographic guarantees

with practical deployment realities.

⃝

49

Results

9.1 Preliminary Analysis

Figure 9.1 illustrates the timing distribution via boxplots. Notable variance in the distribu-

tions suggests heteroskedastic behaviour, indicating sensitivity to underlying architecture

or implementation state. It also revealed positively skewed distributions for all steps,

with after kyber and after dilithium showing heavier tails and higher kurtosis values,

suggesting increased variance.

Figure 9.1: Boxplot of Operation Timing Distributions

The correlation matrix indicated a strong positive correlation (ρ > 0.85) between

after kyber and after id pk s, implying timing co-dependence likely due to shared

memory or cache behavior.

50

9.1 Preliminary Analysis

Figure 9.2: Correlation Heatmap among Operation Timings

51

Results

9.2 Outlier and Anomaly Detection

Using the 3σ rule on each feature’s z-score, a subset of anomalous samples was iden-

tified. These were visualized via scatterplots overlaid on the primary timing sequences

(Figure 9.3).

Figure 9.3: Anomalies in Kyber Timing

Figure 9.4: Deviation from Mean Total Timing

52

9.3 Principal Component Analysis

Additionally, the total time per iteration was calculated and deviations from the mean

were plotted to detect macro-level performance drift (Figure 9.4).

9.3 Principal Component Analysis

Principal Component Analysis (PCA) was employed after standardizing the feature space.

The first two components captured a significant proportion of the variance and highlighted

distinguishable clusters of typical and atypical behaviour (Figure 9.5).

Figure 9.5: PCA Projection of Timing Features

The component loadings shown in Figure 9.6 help identify the most influential features

contributing to variance.

53

Results

Figure 9.6: PCA Loadings for Feature Contribution

54

9.4 Mahalanobis Distance and Multivariate Anomaly Detection

9.4 Mahalanobis Distance and Multivariate Anomaly

Detection

Figure 9.7: Mahalanobis Distance for Multivariate Outliers

We computed the Mahalanobis distance over the PCA-reduced features, which accounts

for inter-feature covariance. Samples with large distances were marked as statistical out-

liers (Figure 9.7). These points correspond to operational states that diverge significantly

from trained profiles and are potential indicators of timing leakage.

9.5 Statistical Testing of Anomalies

Using Welch’s t-test, we compared anomalous samples with the baseline. The p-values for

after id sk s and after dilithium were > 0.43, indicating weak statistical significance

when considered in isolation. However, Cohen’s d effect sizes exceeded 1.0 for several

steps, suggesting high practical significance.

Although p-values are not statistically significant under conventional thresholds (α =

0.05), the large Cohen’s d values support the hypothesis that anomalies are practically

distinguishable and potentially exploitable under certain attack scenarios.

55

Results

Table 9.1: Welch’s t-test and Cohen’s d Summary

Step t-statistic p-value Cohen’s d

after id sk s 1.2371 0.4328 1.2269
after dilithium 1.0983 0.4702 1.0971
after id pk s 1.0614 0.4811 1.0614
after kyber 1.0108 0.4966 1.0107

56

C H A P T E R 10

Analysis

⃝

This chapter presents a rigorous security analysis of the implemented system through

multiple complementary lenses: empirical timing experiments as SCA vectors, formal

verification efforts, and cryptographic proof modeling. The evaluation begins with

concrete measurements of side-channel resistance from the timing attack experiments,

then ascends to abstract security arguments in the Quantum Random Oracle Model. A

structured threat modeling exercise defines adversarial capabilities across web-specific

attack surfaces, while formal verification tools define and operate game-based security

definitions for the composition of Kyber and Dilithium primitives. Particular attention

is given to subtle interactions between components - including SHAKE256’s dual role

as key compressor and PRF, and the non-re-signability requirements for key binding.

The analysis concludes with vulnerability mappings to NIST post-quantum standards

and concrete recommendations for mitigating collision risks, rollback attacks, and

implementation-specific side channels.

⃝

57

Analysis

10.1 Interpretation of Timing Attack Experiment

Our statistical profiling framework successfully detected timing-based deviations indica-

tive of potential leakage vectors. The integration of multivariate anomaly detection (via

Mahalanobis distance) alongside univariate z-score filtering improves robustness against

both random and structured anomalies. The detection of timing anomalies using Maha-

lanobis distance and their confirmation via PCA and effect size metrics affirms the presence

of subtle yet measurable deviations in secure operations. While noise and measurement

variability might explain isolated spikes, repeated patterns suggest deeper microarchi-

tectural factors at play—especially in Kyber and Dilithium post-processing steps. This

approach aligns with side-channel analysis principles where deviation from a ”secure”

profile implies either accidental or adversarial observability. Our results affirm that:

• Kyber and Dilithium operations are not entirely uniform under certain micro-

architectural conditions.

• Implementation hardening against timing side-channels is critical, especially for

PQC primitives.

Future experiments with higher-resolution profiling (e.g., using performance counters or

cache line access profiling) are recommended to attribute leakage sources with finer gran-

ularity.

10.2 Quantum Random Oracle Model Analysis

In analyzing post-quantum schemes with hash functions, we must adopt the Quantum

Random Oracle Model (QROM). The QROM extends the classical random-oracle model

by allowing an adversary quantum access to the hash: that is, the hash oracle “black

box” must accept superposition queries and return the corresponding superposed out-

puts. Formally, a QROM adversary can input a quantum state
∑

x x to the oracle and

receive
∑

xH(x), where H is modeled as a random function. This change is critical:

many classical security proofs fail if an adversary can query in superposition, and new

techniques (quantum rewinding, “collapsing” hash functions, etc.) are often required to

prove security.

58

10.3 Threat Models

In our case, SHAKE256 is modeled as a random oracle. Any security reduction for the

composite identity (e.g. to the hardness of MLWE or MSIS) must operate in the QROM

to account for quantum hashing attacks. For example, [30] prove Dilithium’s security

in the QROM by showing its core hardness (SelfTargetMSIS) under quantum reductions.

Likewise, any analysis of this identity scheme’s unforgeability must assume QROM access

to SHAKE256, ensuring no quantum adversary can exploit hash-oracle superpositions to

break the key derivation [30].

10.3 Threat Models

10.3.1 Adversarial capabilities

In a web identity scenario, we consider multiple adversaries. A passive eavesdropper

may record identity-related messages (certificates, signed tokens, encrypted sessions) now

and later decrypt them with a future quantum computer (“harvest now, decrypt later”).

An active MITM can intercept or modify communications during registration or authen-

tication (e.g. swapping identity keys or performing downgrade attacks). A malicious

server/provider might misuse stored identity keys or collude with attackers to forge cre-

dentials. A malicious user might attempt to forge another user’s identity or generate

colliding keys. Finally, we assume attackers may eventually have quantum capabilities, so

all cryptographic components (including SHAKE256) must be analyzed against quantum

attacks. In each case, the adversary may have access to oracles (e.g. signing or KEM

decapsulation) from compromised services. We also consider side-channel attacks (tim-

ing, fault injection) on client devices, which have broken PQ schemes in the wild (e.g.

“KyberSlash” timing attacks).

10.3.2 Web-Specific Scenarios

For web-based identities, threats include identity spoofing (an attacker generates a bogus

identity key pair that is accepted by servers), session hijacking (compromising a user’s

identity to decrypt or sign sessions), and linkability (tracking a user by their identity key or

usage). In federated or decentralized identity, a compromised Identity Provider might issue

malicious identity keys. We assume an adversary may control DNS or TLS termination

59

Analysis

(MITM) on the network. The threat model also includes long-term security: even if no

quantum computer exists today, encrypted identity attestations could be collected and

broken later, so post-quantum security (e.g. AES-128-class parity) is required.

10.4 Formal Verification Effort

10.4.1 Verification Objectives

We sought to formally verify the following cryptographic guarantees:

1. Existential Unforgeability under Adaptive Chosen Message Attack (EUF-

CMA): No efficient adversary should be able to forge a valid signature under id pk,

even with access to signing oracles. This property is inherited from Dilithium and

is modeled under the quantum random oracle model (QROM).

2. Key Indistinguishability / Anonymity: Given id pk derived from one of two

randomly chosen key pairs, an adversary should not be able to distinguish which pair

was used with probability significantly better than random guessing. This captures

identity unlinkability and resistance to profiling.

3. IND-CCA Security for KEM: No adversary should be able to distinguish be-

tween real and random shared secrets encapsulated to id pk, even under chosen

ciphertext attacks. This is inherited from Kyber’s CCA-secure construction via the

Fujisaki-Okamoto transform, assuming robustness in the QROM.

10.4.2 Tooling and Methodology

The primary tool considered for this effort was CryptoVerif, a computational model-

based verifier capable of producing game-based security reductions for cryptographic pro-

tocols. However, our attempt to encode the identity system revealed key limitations:

• CryptoVerif does not natively support lattice-based primitives such as Kyber or

Dilithium.

• Modeling the SHAKE256-based binding function SHAKE256(·) as a random oracle is

nontrivial due to SHAKE’s extendable-output property (XOF) and the non-standard

use of key concatenation.

60

10.4 Formal Verification Effort

• The composite nature of the identity (a derived key from two primitives) violates

CryptoVerif’s assumptions about monolithic keys and non-overlapping functional-

ity.

10.4.3 Abstraction and Idealization Attempts

To proceed, we attempted the following abstractions:

• Abstracting Kyber and Dilithium as idealized KEM and SIG modules, parameterized

by security assumptions: IND-CCA and EUF-CMA in the QROM.

• Treating SHAKE256 as a true random oracle, justified by existing QROM-based

proofs for both Kyber and Dilithium [2, 3].

• Defining a derived identity key as a function ID(pkK , pkD) = H(pkK ||pkD), assuming

H to be collision-resistant and pseudorandom.

These abstractions allowed us to reason about individual security properties, but a

fully compositional proof remains elusive without an extension of CryptoVerif to support

composite key schemes.

10.4.4 Security Game Definitions

We defined the following games, formally or informally:

EUF-CMA-Identity: An adversary is given id pk and access to a signing oracle (via

Dilithium’s skD), and must forge a signature on a new message.

Key Indistinguishability: The adversary submits two key pairs (pkK0 , pkD0) and

(pkK1 , pkD1), and receives id pk = SHAKE256(pkKb
∥ pkDb

) for a hidden bit b.

It must guess b.

IND-CCA: The adversary receives an encapsulated secret under id pk and access to a

decapsulation oracle (skK), and must distinguish the challenge secret from random.

Each of these games was mapped to assumptions on Kyber and Dilithium holding

in the QROM. We can summarily conclude that, if identity construction is secure under

these definitions if:

61

Analysis

• Dilithium is EUF-CMA secure in the QROM.

• Kyber is IND-CCA secure in the QROM.

• SHAKE256 resists preimage and second-preimage attacks (for binding) and behaves

pseudorandomly (for unlinkability).

10.5 Game-Based Security Definitions

10.5.1 Unforgeability (EUF-CMA-style)

We define existential unforgeability under adaptive chosen-message attack (EUF-CMA)

for the identity as follows. A challenger runs Gen to obtain (skK , pkK) for Kyber and

(skD, pkD) for Dilithium, and computes the identity public key id pk = SHAKE256(pkK ∥
pkD). The adversary is given id pk and allowed to make signing oracle queries (where

the challenger uses skD to sign messages) and possibly KEM encapsulation/decapsulation

queries. Eventually the adversary outputs a purported signature σ on a new message

m. Success is defined as σ being valid under the (implicit) identity and not resulting

from a previous signing query. This mirrors the standard EUF-CMA definition. The

scheme is unforgeable if any polynomial-time (even quantum) adversary’s chance of pro-

ducing such a forgery is negligible. In practice, since identity signatures would use the

Dilithium component, we require that Dilithium’s EUF-CMA security (in QROM) ex-

tends to the composite: even if an attacker knows id pk , they cannot forge a signature

without Dilithium’s skD.

10.5.2 Indistinguishability/Anonymity of Keys

We also consider a key indistinguishability or unlinkability game. Intuitively, given an

identity public key, an adversary should learn no more about the user than any other

random key of the same type. Concretely, we can define a game where the adversary

chooses two underlying key-pairs ((pkK0 , pkD0) and (pkK1 , pkD1)). The challenger picks a

random bit b ∈ {0, 1} and computes id pk = SHAKE256(pkKb
∥ pkDb

), giving id pk to

the adversary. The adversary may make further queries (e.g. to sign/encapsulate) under

id pk , then guesses b. The scheme has key indistinguishability if the adversary cannot do

62

10.5 Game-Based Security Definitions

significantly better than random guessing. This notion captures privacy or anonymity:

observing an identity key (or its use in protocols) should not let an adversary tell which

user it belongs to or link two sessions of the same user except by brute force. Equivalently,

SHAKE256(pkK ∥ pkD) should behave like a pseudorandom identifier. If SHAKE output

is sufficiently large (see below), collisions or partial information leaking are negligible.

10.5.3 KEM CCA security:

For completeness, if the identity key is used in encryption (Kyber), one can also define

an IND-CCA game: the adversary gets id pk = SHAKE256(pkK ∥ pkD) and can query

a KEM decapsulation oracle for chosen ciphertexts (using skK). The adversary’s goal

is to recover the shared secret from a challenge ciphertext encapsulated to id pk . The

composite scheme will be IND-CCA secure if Kyber’s IND-CCA holds (in QROM, under

FCA transform) when used with the id-derivation method. Likewise, CCA security in

QROM is needed if identity key is part of an encryption scheme.

The security of our digital identity algorithm can be expressed by standard games:

EUF-CMA for signatures and IND-CCA/IND-CPA for encapsulation, all considered in the

QROM because SHAKE256 is an oracle. For high assurance, we might require “hybrid”

style security: the identity is secure if at least one of the underlying schemes is (e.g.

if Dilithium remains unforgeable, signatures are safe even if Kyber is broken, and vice

versa). In practice, NIST guidance suggests that in a hybrid scenario, compromising one

algorithm should not trivially break all security.

10.5.4 SHAKE256 as Key Compression and PRF

SHAKE256 (from NIST’s SHA-3 standard, FIPS 202) is an extendable-output func-

tion (XOF) with provable resistance to known attacks. It can generate outputs of

arbitrary length. When compressing keys, we treat SHAKE256 as a random oracle:

e.g. id pk = SHAKE256(pkK ∥ pkD, L) for some fixed output length L, and similarly

id sk = SHAKE256(skK ∥ skD, L
′). The security of this compression relies on SHAKE

behaving as a good randomness extractor. In the post-quantum setting, the main con-

sideration is Grover’s algorithm: a quantum adversary can invert a random oracle with

∼ 2L/2 effort. Thus, to achieve ∼128-bit quantum security on the compressed key, we

should output at least 256 bits. For example, SHAKE256 with 256-bit output yields 128-

63

Analysis

bit preimage resistance quantumly (classically 256-bit). Outputs shorter than ∼256 bits

would fall below 128-bit security against quantum attackers. SHAKE256 is FIPS-approved

and collision-resistant (aside from generic 2L/2 attacks), so using it as a KDF is gener-

ally sound. We must ensure domain separation between the public and secret hashing

contexts (e.g. by prefixing or using SHAKE with different domain flags, to avoid subtle

length-extension issues). We also must fix the output lengths in the protocol (the SHA3

example on 3DES key derivation shows how variable lengths can be exploited). In prac-

tice, fixing both L and L′ avoids accidental overlap. If L is large enough, collisions (two

different key pairs hashing to the same id pk) are vanishingly unlikely; a collision would

cause identity confusion (two users sharing the same identity). With 256-bit output, the

chance of random collision is ∼ 2−128, essentially negligible. In summary, SHAKE256 is a

suitable post-quantum KDF, but implementers must use sufficient output length (≥256

bits) and a clear domain-separation between public-key hashing and secret-key hashing.

10.5.5 Composition of Kyber and Dilithium

Kyber (module-LWE KEM) and Dilithium (lattice Fiat-Shamir signature) rely on related

but distinct hardness assumptions (MLWE vs. MSIS) and offer orthogonal functionalities.

Combining them into one identity can, in principle, yield a hybrid scheme: the identity

can both decrypt (via Kyber) and sign (via Dilithium). However, this hybridization must

be carefully analyzed.

10.5.6 Security guarantees:

NIST and IETF literature note that hybrid schemes aim to remain secure if at least one

component holds. For encryption, the standard approach is to concatenate shared secrets

from two KEMs and feed into a KDF (SP 800-56C); for signatures, “dual signatures”

(signing with both schemes) are used. In our case, we combine keys rather than oper-

ations. We can argue informally that if either Kyber or Dilithium remains unbroken,

then one of the services (confidentiality or authenticity) survives. For example, even if

a quantum breakthrough breaks Kyber’s MLWE, Dilithium signatures (and thus iden-

tity authentication) remain secure; conversely if Dilithium is compromised, Kyber still

provides confidentiality (though identity forgery would be easy).

64

10.5 Game-Based Security Definitions

10.5.7 Potential pitfalls

Unlike standard dual signatures, this scheme does not produce two signatures per message;

it produces a single identity token. Thus it is not guaranteed that “at least one signature

must verify” – the Dilithium part is effectively used alone for signing. An adversary who

breaks Dilithium can fully impersonate the identity (produce signatures) even if Kyber is

secure. Conversely, a Kyber break would allow ciphertext decapsulation but would not

by itself forge signatures. There is no well-known attack against this composition per se,

but we must ensure no cross-dependencies weaken either part. For instance, if using the

identity secret (id sk = SHAKE(skK ∥ skD)) to seed operations, care must be taken that

leakage from one algorithm’s usage cannot reveal bits of the other.

10.5.8 Non-re-signability and key binding

Some recent work studies when one identity might fake another’s signatures (the BUFF

properties). In our composite key, one might ask: if an adversary obtains a signature under

identity A, can they transform it into a signature under identity B? Because signatures

use Dilithium secret keys, this would require forging new Dilithium signatures for B. As

long as the SHAKE compression is one-way and collision-resistant, different key pairs lead

to different id pk , preventing trivial swapping. However, if SHAKE output is too short,

two distinct key pairs can collide to the same id pk , leading to ambiguity. Hence, output

length is again critical.

10.5.9 Performance and standards

Kyber and Dilithium were chosen for performance reasons (efficient lattice operations).

Combining them naively could increase storage/communication, but SHAKE compres-

sion mitigates that by shrinking the identity’s representation. There is no standard that

prescribes hashing entire keypairs as done here; typical PQ KEM+signature composites

(e.g. in TLS 1.3 hybrid mode) keep both keys separate. Thus, this scheme diverges from

standard practice. NIST’s PQC FAQ acknowledges hybrid constructions but emphasizes

“case-by-case” analysis. Our composition must be analyzed on its own merits: we rely

on the fact that each component (Kyber and Dilithium) individually meets its security

definitions. Under composition, a security reduction might treat an attack on the identity

65

Analysis

as either an attack on Dilithium (for forgery) or on Kyber (for key recovery).

10.5.10 Known guidance

There is little direct literature on compressing two keys into one via hashing. However,

the IETF’s hybrid signature draft highlights that if one component fails, the other still

provides security. NIST’s dual-signature guidance stresses verifying all component signa-

tures. Neither directly applies here, but both endorse the general hybrid philosophy. We

conclude that structurally, using both Kyber and Dilithium is sound: both are “primary”

NIST standards, so each is deemed quantum-safe. The unusual step is hashing the keys;

as discussed, this is acceptable only if done properly (long output, one-way, distinct do-

mains). If those conditions hold, the composite identity is no weaker (and no stronger)

than using two keys in parallel.

10.5.11 Compliance with Post-Quantum Standards

The algorithm aligns with NIST PQC policy in that it uses approved primitives (Kyber

and Dilithium) at standardized security levels. Kyber-1024 and Dilithium-5 (or 4) would

provide ∼NIST Level-5 security. Compliance requires proper implementation of these

schemes (constant-time code, correct parameters). On composition: NIST allows hybrid

key agreement by concatenating shared secrets and deriving keys (SP 800-56C), and dual

signatures (signing with two algorithms). However, our method of hashing concatenated

keys is nonstandard. NIST guidance is to analyze hybrids carefully. In particular, NIST

notes the desired property that the result remain secure if at least one underlying scheme

is secure, and that dual signatures require both signatures to verify. Here we effectively

rely on a single signature (Dilithium), so we do not meet the “all must verify” criterion.

Thus, one should consider this approach more a space-saving technique than a full hybrid

signature. Regarding SHAKE256, NIST FIPS 202 approves its use. SHAKE256 has “col-

liding outputs for different lengths” warnings in its standard, but as long as fixed-length

outputs are used with domain separation, it is FIPS-compliant. In short, using SHAKE256

for key derivation is acceptable per NIST guidelines, provided keys are large enough. If

this identity key generation were to be FIPS-validated, one would need a formal proof of

security. NIST SP 800-227 (forthcoming) will address KEM combiners, but none yet cover

signature/KEM combos. So formally, this scheme goes beyond current NIST templates

66

10.6 Potential Vulnerabilities and Recommendations

and would require custom analysis.

10.6 Potential Vulnerabilities and Recommendations

10.6.1 Collision and Key-Binding Risks

If SHAKE256 outputs are too short, two distinct (pkK , pkD) pairs might yield the same

identity key, enabling identity collision attacks. We recommend at least 256-bit (or 512-

bit) output for id pk to make this negligible. Similarly, id sk should be large enough to

prevent preimage attacks – since id sk = SHAKE(skK ∥ skD), a quantum adversary would

need ∼ 2L′/2 effort to invert it.

10.6.2 Subtle Interactions

Because id pk is a hash of public keys, an adversary who can influence one underlying

key (e.g. a malicious user picking their own Dilithium key) could try to cause a specific

identity output. This is akin to a “key-substitution” attack. However, since both pkK

and pkD are random from secure algorithms, and SHAKE acts pseudorandomly, this risk

is minimal if all parties are honest during generation. If an attacker can register multiple

identities, they could try to find a hash collision, but again output size thwarts that.

10.6.3 Rollback and Re-signing

Unlike classical concatenation, hashing is irreversible. Therefore, one cannot “extract”

(skK , skD) from id sk . This means the identity holder cannot directly use id sk to perform

Kyber decryption or Dilithium signing unless they also store the original secret keys or

regenerate them from some seed. If the intended use was to base operations on id sk , then

this algorithm is flawed – because hashing loses the structure needed for those algorithms.

(In practice, one would use skK and skD separately and keep them secret; id sk may

serve only as an identifier or key in some protocol.) This design choice must be clearly

understood: the security of decryption/signature relies on (skK , skD) being kept secret

separately, not on id sk alone. If id sk were the sole stored secret, the protocol cannot

function.

67

Analysis

10.6.4 Side-Channel and Implementation

Using two lattice primitives does not inherently mitigate implementation flaws. Each

component must be implemented with side-channel protections. Combining them does not

cancel side channels – if an attacker exploits timing in Kyber, they may learn the user’s

secret even if Dilithium remains safe. We emphasize standard best practices (constant-

time arithmetic, fault detection) for both schemes.

10.6.5 Future-Proofing

As lattice schemes mature, new vulnerabilities may appear. For instance, if a new algo-

rithm significantly weakens MLWE, Kyber’s confidentiality would degrade, but Dilithium

(if unaffected) still protects authenticity. Conversely, if a lattice breakthrough breaks SIS-

based Dilithium, signatures fail but encrypted data (assuming Kyber’s M-LWE remains

hard) remains safe. The hybrid nature means users get “two chances” for some security

properties, but should not assume absolute immunity. We recommend monitoring ad-

vances in lattice cryptanalysis and possibly updating the identity scheme (e.g. switching

one component to a different PQ primitive if needed).

68

C H A P T E R 11

Conclusion and Future Scope

⃝

This work culminates in a fully realized post-quantum digital identity system, unifying

lattice-based cryptography (CRYSTALS-Kyber and Dilithium) with zero-knowledge

proofs to address the existential threat quantum computing poses to digital identities.

The implemented architecture demonstrates that quantum-resistant primitives can be

practically deployed in web environments without compromising usability or performance.

Beyond apparent quantum resilience, the system’s modular design enables incremental

upgrades to algorithms and protocols as cryptographic research advances. We conclude

the work by suggesting some future research directions in formalization and computing.

⃝

69

Conclusion

11.1 Conclusion

This paper addresses the critical need for transitioning digital identity systems to post-

quantum security paradigms, driven by the imminent threats posed by quantum comput-

ing. Classical cryptosystems, including RSA and ECC, are highly vulnerable to quantum

attacks, necessitating a shift to quantum-resistant alternatives. The proposed system in-

tegrates lattice-based cryptographic algorithms CRYSTALS-Kyber for key encapsulation

and CRYSTALS-Dilithium for digital signatures with zero-knowledge proofs (ZKP) to en-

sure robust security and privacy. This dual-pronged approach provides a scalable, efficient,

and user-friendly solution to protect digital identities in web-based environments, making

it a foundational step toward secure digital interactions in the quantum era. The architec-

ture, designed to support web-based ecosystems primarily through Chromium V8-based

browser environments, demonstrates the effective application of modular cryptographic

principles. The cryptographic kernel ensures secure operations such as key generation,

signing, and verification, while the state module and application server manage seam-

less integration with front-end components. The use of ZKPs eliminates the need to

disclose sensitive user data during authentication, ensuring user privacy and reinforcing

trust in digital identity systems. The integration of post-quantum algorithms addresses

the immediate need for resilience against quantum adversaries while maintaining compat-

ibility with emerging cryptographic standards. Initial performance evaluations highlight

the system’s operational stability and suitability for real-world applications. Consistent

baseline performance across encryption and decryption operations demonstrates the re-

liability of the system, with most operations completing within predictable time-frames.

Isolated performance spikes in encryption and decryption times suggest areas for poten-

tial optimization, particularly in resource-intensive scenarios. These findings validate the

feasibility of deploying the system in practical environments, from individual user appli-

cations to large-scale institutional frameworks.

A promising area for future development involves the application of CRYSTALS-Dilithium

for signing digital media and managing data integrity. Digital signatures generated using

Dilithium are compact, efficient, and secure against both classical and quantum threats,

making them ideal for authenticating digital content such as documents, multimedia files,

and software updates. This capability is particularly relevant in scenarios where the

70

11.2 Future Scope

provenance and authenticity of content must be verified, such as legal agreements, digi-

tal certificates, and secure communications. Incorporating Dilithium into content signing

workflows could mitigate risks of forgery and tampering, enhancing trust in digital in-

teractions. Similarly, CRYSTALS-Kyber’s robust key encapsulation mechanisms can be

extended to ensure the integrity and confidentiality of sensitive data during storage and

transmission. By leveraging Kyber’s post-quantum security guarantees, organizations can

implement enhanced integrity management systems that protect against data corruption

and unauthorized access. These systems could be applied to cloud storage platforms,

financial transactions, and IoT networks, where the security of transmitted and stored

data is paramount. Integrating Kyber-based mechanisms into existing data management

frameworks would not only fortify security but also prepare these systems for the eventual

rise of quantum computing.

11.2 Future Scope

The future scope of this system includes optimizing computational performance, reducing

resource overhead, and enhancing user experience to facilitate broader adoption. Fu-

ture formal verification effort should aim to extend existing provers (e.g., CryptoVerif,

Tamarin, ProVerif) with modular support for lattice-based primitives and XOFs, provide

a compositional security proof that reductions from Kyber and Dilithium imply security

of the derived identity, develop a library of hybrid constructions with formally verified

security guarantees in the QROM. Expanding the application of post-quantum crypto-

graphic mechanisms to additional use cases, such as decentralized identity management

and blockchain integration, could further extend the utility of the system. As the quan-

tum computing landscape evolves, continuous advancements in cryptographic research

and practical implementations will be critical to maintaining security and trust in digital

ecosystems. The proposed system thus represents a significant contribution in safeguard-

ing digital identities and upholding data integrity in the face of quantum challenges.

71

A P P E N D I XA

Appendix A

⃝

This appendix contains analysis code.

⃝

73

Appendix A

A.1 Code for analysis

A.1.1 Circuit for Zero-Knowledge Proof

// C i r cu i t f o r Age and ID Ve r i f i c a t i o n

template AgeAndIDVeri f icat ion () {

s i g n a l input age ;

s i g n a l input sapID [1 1] ;

s i g n a l output i sAgeVal id ;

s i g n a l output isSAPValid ;

component gteqAge = GreaterEqThan (8) ;

component gteqSAP = GreaterEqThan (4) ;

gteqAge . in [0] <== age ;

gteqAge . in [1] <== 18 ;

gteqAge . out ==> i sAgeVal id ;

gteqSAP . in [0] <== sapID [0] ;

gteqSAP . in [1] <== 6 ;

gteqSAP . out ==> isSAPValid ;

i sAgeVal id ∗ (i sAgeVal id − 1) === 0 ;

isSAPValid ∗ (isSAPValid − 1) === 0 ;

}

component main { public [age , sapID] }

= AgeAndIDVeri f icat ion () ;

A.1.2 Proof Generation

74

A.1 Code for analysis

// Generate Proof

const generateZKProof = async (age , sapId) => {

const { proof , p u b l i c S i g n a l s } =

await s n a r k j s . groth16 . f u l l P r o v e (

{ age : age , sapID : sapId } ,

” c i r c u i t . wasm” ,

” c i r c u i t . zkey ”

) ;

r e turn { proof , p u b l i c S i g n a l s } ;

} ;

A.1.3 Proof Verification

// Ver i fy Proof

const v e r i f y P r o o f = async (proofData) => {

const { proof , p u b l i c S i g n a l s } = proofData ;

const vKey = JSON. parse (

await f s . promises . r e a d F i l e (

’ v e r i f i c a t i o n k e y . json ’ ,

’ ut f −8’

)

) ;

r e turn s n a r k j s . groth16 . v e r i f y (

vKey ,

pu b l i c S i gn a l s ,

proo f

) ;

} ;

75

Appendix A

A.1.4 Setup Process

circom c i r c u i t . c ircom −−r 1 c s −−wasm −−sym −−c

s n a r k j s powersoftau new bn128 12 pot12 0000 . ptau −v

s n a r k j s powersoftau cont r i bu t e pot12 0000 . ptau \

pot12 0001 . ptau −−name=” F i r s t c o n t r i b u t i o n ” −v

s n a r k j s powersoftau prepare phase2 pot12 0001 . ptau \

p o t 1 2 f i n a l . ptau −v

s n a r k j s groth16 setup c i r c u i t . r 1 c s p o t 1 2 f i n a l . ptau \

c i r c u i t . zkey −v

s n a r k j s zkey export v e r i f i c a t i o n k e y c i r c u i t . zkey \

v e r i f i c a t i o n k e y . j son −v

76

A P P E N D I XB

Appendix B

⃝

This appendix documents encountered errors.

⃝

77

Appendix B

B.1 System Errors

The principal errors surrounding the algorithm and its testing were not in its implementa-

tion (surprisingly) but the system. System-level errors primarily arose during compilation,

package installation, and dependency linking, particularly on Linux-based systems.

• ‘undefined reference to <symbol>’ — Occurs when required object files or li-

braries are not linked during compilation.

• ‘command not found‘ — Common when a binary or script is not on the system’s

PATH or not installed.

• ‘permission denied‘ — Triggered by insufficient privileges to access or execute a

file, often mitigated by setting permissions or using sudo.

• ‘ELF load error‘ — Happens when attempting to execute a binary compiled for

a different architecture.

B.2 Web Extension Errors

These errors were observed during the integration of the web extension with a native

messaging host and backend server.

• ‘Could not establish connection. Receiving end does not exist.‘ — Indicates

an incorrect runtime message target or a missing listener in the background script.

• ‘Native host has exited.‘ — Raised when the native messaging host closes unex-

pectedly or fails to respond in time.

• ‘Error parsing native message‘ — Occurs when the JSON message sent from

the native app is malformed or not prefixed with the 4-byte length.

78

B.3 VM Errors

B.3 VM Errors

Errors encountered while deploying code on a remote virtual machine, typically Ubuntu-

based.

• ‘Connection refused‘ — When SSH service is not running or the firewall blocks

the port.

• ‘No space left on device‘ — Arises from insufficient storage, often in /tmp, /var,

or user home directories.

• ‘Segmentation fault‘ — Occurs due to invalid memory access in a program com-

piled and executed on the VM.

B.4 C Errors

C programming errors were mainly encountered during development of low-level crypto-

graphic interfaces and FFI bindings.

• ‘Segmentation fault (core dumped)‘ — A generic memory violation error, fre-

quently due to dereferencing null or invalid pointers.

• ‘double free or corruption‘ — Raised when attempting to deallocate memory

that has already been freed.

• ‘invalid conversion from ...‘ — Type mismatch errors, common when using void

pointers or interfacing with external libraries.

• ‘undefined behavior due to buffer overflow‘ — Caused by writing beyond the

allocated array bounds, especially in cryptographic buffer handling.

79

References

[1] NIST. Post-quantum cryptography standardization, round 3 report, 2022. (Cited in section 1.2.)

[2] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,

Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber: A cca-secure module-lattice-based

kem, 2018. IACR Cryptology ePrint Archive, Report 2017/634. (Cited in sections 1.2 and 10.4.3.)

[3] Vadim Lyubashevsky, Thomas Prest, Gregor Seiler, and Peter Schwabe. Crystals-dilithium: Digital

signatures from module-lattices, 2018. IACR Cryptology ePrint Archive, Report 2017/633. (Cited

in sections 1.2 and 10.4.3.)

[4] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. (Cited in section 2.1.)

[5] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings

of the thirty-seventh annual ACM symposium on Theory of computing, pages 84–93, 2005. (Cited in

section 2.1.)

[6] National Institute of Standards and Technology. Post-quantum cryptography standardization:

Round 3 results, 2022. (Cited in sections 2.1 and 2.2.)

[7] Daniel J. Bernstein, David Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Peter Pa-

pachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn. Sphincs: Practical

stateless hash-based signatures, 2015. In Eurocrypt 2015. (Cited in section 2.1.)

[8] Daniel J. Bernstein and Tanja Lange. Classic mceliece, 2008. Submission to NIST Post-Quantum

Cryptography Standardization Process. (Cited in section 2.1.)

[9] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature scheme. In

Applied Cryptography and Network Security, pages 164–175. Springer, 2005. (Cited in section 2.1.)

[10] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from super-

singular elliptic curve isogenies. In PQCrypto, pages 19–34. Springer, 2011. (Cited in section 2.1.)

81

References

[11] National Institute of Standards and Technology. Post-quantum cryptography standardization, 2016.

(Cited in section 2.2.)

[12] National Institute of Standards and Technology. Post-quantum cryptography standardization:

Round 4 candidates, 2025. Accessed from official NIST website. (Cited in section 2.2.)

[13] Joppe W. D’Anvers, Frederik Vercauteren, Thomas Pöppelmann, and Marnix Van Beirendonck.

Implementation and comparison of lattice-based signatures for embedded systems. Journal of Cryp-

tographic Engineering, 10:309–326, 2020. (Cited in section 2.3.)

[14] IDEMIA. Cryptographic agility in the post-quantum era, 2023. (Cited in section 2.3.)

[15] Cloudflare. Introducing hybrid post-quantum tls with kyber and x25519, 2025. (Cited in section 2.3.)

[16] Google Inc. Experimenting with post-quantum cryptography, 2019. (Cited in section 2.3.)

[17] Cloudflare. Post-quantum crypto in tls now, 2020. (Cited in section 2.3.)

[18] Thales Group. Post-quantum cryptography: Standardization, threats and transition. White Paper,

2023. (Cited in section 2.3.)

[19] Kim Cameron. The laws of identity. In Microsoft Corp., 2005. (Cited in section 2.4.)

[20] Alex Preukschat and Drummond Reed. Self-Sovereign Identity: Decentralized Digital Identity and

Verifiable Credentials. Manning Publications, 2021. (Cited in section 2.4.)

[21] Phil Windley. Sovrin: A protocol and token for self-sovereign identity and decentralized trust, 2018.

(Cited in section 2.4.)

[22] Maria Apostolaki, Linus Gasser, and Srdjan Capkun. Towards secure and privacy-preserving decen-

tralized identity. IEEE Security & Privacy, 2022. (Cited in section 2.4.)

[23] John Friedman and Nick Weaver. Post-quantum digital signatures: Challenges in mobile systems,

2021. (Cited in section 2.5.)

[24] Nick Bindel, Johannes Brendel, and Marc Fischlin. Hybrid signatures with tight security in the

multi-user setting. Designs, Codes and Cryptography, 2021. (Cited in section 2.5.)

[25] Liren Ren, Yihang Zhang, Xiao Wang, and Jin Ran. Long-term security and pqc migration in

identity management systems. Future Generation Computer Systems, 137:157–171, 2023. (Cited in

section 2.5.)

[26] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero

knowledge for a von neumann architecture. USENIX Security Symposium, 2014. (Cited in sec-

tion 2.5.)

[27] Qiang Tang, Jiaxin Yu, and Ying Liu. A bibliometric analysis of post-quantum cryptography re-

search. Cryptography, 6(3), 2022. (Cited in section 2.5.)

82

[28] A. Ott, A. Szepieniec, and E. Verheul. Quantum-secure identity-based encryption and digital identity

systems. Journal of Cryptology, 32(2):239–260, 2019. (Cited in sections 1 and 3.)

[29] J. Tan, Z. Huang, and H. Wei. Transitioning to quantum-secure digital identity systems: Challenges

and opportunities. Future Generation Computer Systems, 129:495–512, 2022. (Cited in sections 1,

2 and 4.)

[30] Kelsey A. Jackson, Carl A. Miller, and Daochen Wang. Evaluating the security of crystals-dilithium

in the quantum random oracle model, 2024. (Cited in section 10.2.)

83

Publications

Journals

1. ”Digital Identity System using post-quantum cryptographic paradigms” (Submitted

to Journal of Cryptographic Engineering (Q3), Reviewed by IACR Communications

in Cryptology (Q1))

Conferences

1. ”Multi-ID Zero Knowledge Proof Systems for Anonymous and Verified Complaints”

(Submitted to International Conference for Women in Innovation, Technology and

Entrepreneurship, ICWITE, IEEE Bangalore Section)

⃝

85

2%
SIMILARITY INDEX

2%
INTERNET SOURCES

2%
PUBLICATIONS

%
STUDENT PAPERS

1 1%

2 1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 1%

Thesis Report
ORIGINALITY REPORT

PRIMARY SOURCES

www.coursehero.com
Internet Source

Mohammad Hammoudeh, Abdullah T. Alessa,
Amro M. Sherbeeni, Clinton M. Firth, Abdullah
S. Alessa. "Quantum Computing - A Journey
into the Next Frontier of Information and
Communication Security", CRC Press, 2024
Publication

	Declaration
	Certificate
	Approval Sheet
	Acknowledgement
	Abstract
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Project Scope and Contributions

	2 Literature Survey
	2.1 History of Post-Quantum Cryptography
	2.2 NIST PQC Standardization Process
	2.3 Transition towards Post-Quantum Cryptography
	2.4 Digital Identity Systems
	2.5 Research Gaps

	3 Proposed Model
	3.1 Cryptographic Kernel
	3.2 State Module
	3.3 Other Modules Considering Application

	4 Methodology
	4.1 Approach
	4.2 Design Considerations
	4.3 Cryptographic Considerations
	4.3.1 Timing Attack Evaluation
	4.3.2 Statistical Space Evaluation using Mahalanobis Distance

	5 Requirements
	5.1 Software Requirements
	5.2 Hardware Requirements

	6 Architecture
	6.1 Cryptographic Kernel
	6.2 Cryptosystems employed
	6.2.1 CRYSTALS-Kyber
	6.2.2 CRYSTALS-Dilithium

	6.3 Mathematical Basis for CRYSTALS Algorithms
	6.3.1 Module Learning With Errors (MLWE) Problem
	6.3.2 Module Short Integer Solution (MSIS) Problem

	6.4 State Module
	6.5 User Interface Components
	6.5.1 Web Client
	6.5.2 Web Extension

	6.6 Zero-Knowledge Proof Module
	6.6.1 Theoretical Foundations
	6.6.2 Security Considerations

	7 Implementation
	7.1 CRYSTALS-Kyber
	7.1.1 Overview
	7.1.2 Mathematical Foundations
	7.1.3 Reference Implementation Details
	7.1.4 Strengths
	7.1.5 Code Example

	7.2 CRYSTALS-Dilithium
	7.2.1 Overview
	7.2.2 Mathematical Foundations
	7.2.3 Reference Implementation Details
	7.2.4 Strengths
	7.2.5 Code Example

	7.3 Identity Generation Algorithm
	7.3.1 Description
	7.3.2 Algorithm
	7.3.3 Mathematical Basis
	7.3.4 Error Handling

	7.4 Key Derivation Function
	7.4.1 Description
	7.4.2 Mathematical Basis
	7.4.3 Algorithm

	7.5 Zero-Knowledge Proofs
	7.5.1 Overview
	7.5.2 Circuit
	7.5.3 Security Features in Implementation

	8 Experimentation
	8.1 Approaches
	8.2 Data Collection Methodology
	8.3 Timing Attack Experiment

	9 Results
	9.1 Preliminary Analysis
	9.2 Outlier and Anomaly Detection
	9.3 Principal Component Analysis
	9.4 Mahalanobis Distance and Multivariate Anomaly Detection
	9.5 Statistical Testing of Anomalies

	10 Analysis
	10.1 Interpretation of Timing Attack Experiment
	10.2 Quantum Random Oracle Model Analysis
	10.3 Threat Models
	10.3.1 Adversarial capabilities
	10.3.2 Web-Specific Scenarios

	10.4 Formal Verification Effort
	10.4.1 Verification Objectives
	10.4.2 Tooling and Methodology
	10.4.3 Abstraction and Idealization Attempts
	10.4.4 Security Game Definitions

	10.5 Game-Based Security Definitions
	10.5.1 Unforgeability (EUF-CMA-style)
	10.5.2 Indistinguishability/Anonymity of Keys
	10.5.3 KEM CCA security:
	10.5.4 SHAKE256 as Key Compression and PRF
	10.5.5 Composition of Kyber and Dilithium
	10.5.6 Security guarantees:
	10.5.7 Potential pitfalls
	10.5.8 Non-re-signability and key binding
	10.5.9 Performance and standards
	10.5.10 Known guidance
	10.5.11 Compliance with Post-Quantum Standards

	10.6 Potential Vulnerabilities and Recommendations
	10.6.1 Collision and Key-Binding Risks
	10.6.2 Subtle Interactions
	10.6.3 Rollback and Re-signing
	10.6.4 Side-Channel and Implementation
	10.6.5 Future-Proofing

	11 Conclusion and Future Scope
	11.1 Conclusion
	11.2 Future Scope

	A Appendix A - Code for analysis
	A.1 Code for analysis
	A.1.1 Circuit for Zero-Knowledge Proof
	A.1.2 Proof Generation
	A.1.3 Proof Verification
	A.1.4 Setup Process

	B Appendix B - Errors described
	B.1 System Errors
	B.2 Web Extension Errors
	B.3 VM Errors
	B.4 C Errors

	References
	List of Publications

